Design of a Component-Based Augmented Reality Framework

Martin Bauer, Bernd Bruegge, Gudrun Klinker, Asa MacWilliams, Thomas Reicher, Stefan Riss, Christian Sandor, Martin Wagner *Technische Universität München*

Institut für Informatik

Summary

- We think the time has come for augmented reality frameworks
- This will allow software components to be reused between different AR applications
- We have built and tested a first version of such a framework, called DWARF

Outline

- Advantages of an AR framework
- Necessary elements of an AR framework
- DWARF architecture and components
- Demonstration system

Advantages– Project manager

- Components can be reused in different applications
- Components are "black boxes" for other components
- Distribute development in time and space
- Rapid prototyping of AR applications becomes feasible

Advantages- User

- Software is integrated with hardware in wearable or stationary *modules*
- System is reconfigured by re-plugging modules

Advantages- Application developer

- System consists of layered services
- Application is modeled by configuring services

Advantages- Module developer

- Modules are hardware with software services
- Services provide basic functionality, e.g. tracking
- Services have needs and abilities

Elements of an AR framework

- Services providing general functionality

 General enough to reuse, yet also efficient
- Architecture to fit the services together
 - Generalization of many different AR systems
- Middleware to let services communicate
 - Must allow fast yet flexible communication

DWARF– Main services

- Distributed Wearable Augmented Reality Framework as test of framework concepts
- First DWARF services cover the basic functionalities for AR applications
 - World model, optical tracker, GPS/compass tracker, tracking manager, user interface engine,VRML viewer, HTML viewer, voice recognition, taskflow engine, context router
- Implementation of services uses wellestablished and third-party technology

DWARF– Generic architecture

DWARF-Middleware

- To find each other spontaneously and communicate with one another, the DWARF services use CORBAbased Middleware
- This is distributed as local Service Managers on each hardware node to provide fault tolerance

Demo system– Navigation scenario

- Indoor and outdoor campus navigation system
- Wireless access to external services
- 2D maps, 3D maps and AR overlays

Demo system – Using the framework

- Nearly entire functionality is handled by the **DWARF** services
 - Navigation sequence, campus geography, multimodal I/O, printer location, outdoor tracking, indoor tracking, 3D rendering
- Application design is greatly simplified
 - Model campus and navigation in markup languages
 - Bootstrapping, glue logic
- Application implemented in three weeks' time

Demo system– Hardware

- Backpack system for demonstration of software
- Two laptops running Windows NT and 98
- Glasstron see-though HMD, FireWire Camera for Optical Tracking, commercial GPS receiver, Bluetooth / WaveLAN wireless communication
- Battery-powered, > 2 hours of operation

Conclusion

- The time has come for AR frameworks
 - Technology is becoming mature
 - Number of AR research groups is increasing
- We have investigated the feasibility of AR frameworks
 - Componentization is workable
 - Performance does not suffer from distribution
 - Rapid application development becomes possible
- We would like to encourage a discussion on framework components and technology.

Thank you

• Any questions?