
An Architecture Concept for
Ubiquitous Computing Aware Wearable Computers

Martin Bauer, Bernd Brügge, Gudrun Klinker, Asa MacWilliams,
Thomas Reicher, Christian Sandor, Martin Wagner

(bauerma, bruegge, klinker, macwilli, reicher, sandor, wagnerm)@in.tum.de

Institut für Informatik
Technische Universität München

80290 Munich, Germany

Abstract

In Marc Weiser’s vision of ubiquitous com-
puting, users are located in an environment with
potentially thousands of computers around them.
Many capabilities of these smart devices can be
used only by augmenting the users’ senses with
a kind of “sixth electronic sense”. Thus, ubiq-
uitous computing and wearable computing com-
plement one another. However, the architectural
styles for them are quite different.

This paper presents a new flexible and mod-
ular network-centered approach for the design of
wearable computers. In our concept, a wearable
computer is composed of a network of modules.
A module can be worn by the user or be station-
ary in the user’s environment. Each is a sepa-
rate unit with its own processing, memory, I/O,
power, and network connection, and provides
specific functionality in the network. The mod-
ules reveal their abilities and needs to each other
and dynamically assemble to form a network-
based wearable multi-computer.

Our concept has been used in the dwarf

framework to build a first prototype system for
indoor and outdoor navigation.

1 Introduction

In Marc Weiser’s vision of ubiquitous com-
puting [12], users are located in an environ-
ment with potentially hundreds or even thou-
sands of computers around them. These com-
puters are embedded into everyday items and

augment them with some form of intelligence.
The user should be able to interact with them
as freely as before without being bound to a con-
trolling computer in his office. Many possibilities
of these smart devices can be used only by aug-
menting the user’s senses with a kind of “sixth
electronic sense”. This “sixth sense” is a me-
diator between the user’s natural senses and the
natural sense of the electronic world for receiving
data. Thus, ubiquitous computing and wearable
computing are complementary to each other.

Nevertheless, the architectural styles for
them are quite different. While wearable com-
puting uses the classical PC paradigm, ubiqui-
tous computing uses distributed computing con-
cepts. We propose a new flexible and modu-
lar network-centered approach for the design of
wearable computers that allows a seamless inte-
gration of the wearable computer on the body
into its ubiquitous computing environment.

In our concept, a wearable computer is com-
posed of a network of modules. A module can be
worn by the user or be stationary in the user’s
environment, ready to provide services. Each of
them is a hardware unit with its own processing
unit, memory, I/O, power, and network connec-
tion, and provides specific functionality in the
network. An example for such functionality is
user tracking for augmented reality. Modules re-
veal their abilities and needs to each other and
dynamically assemble to form a network-based
wearable multi-computer.

2 Related Work

Commercially available wearables [11, 13] or
research prototypes are basically standard per-



sonal computers with a hardware design that al-
lows them to be worn on the waist or in a vest.
The core is a box with the CPU that controls the
entire functionality. Other devices are periph-
erals that are connected via USB, FireWire, or
some other interface to this box. Other designs
with a flexible circuitry allow one to assemble
several microcomputer cards [5] into a wearable
computer, but the basic platform concept is the
classical architecture of the personal computer.
The software that makes the peripheral devices
useful runs on the CPU of the wearable, not the
peripheral device.

The Spot Computer from Carnegie Mellon
University [4], the MIThril from MIT Media
Lab [9], or LART (Linux Advanced Radio Ter-
minal) developed at Delft University of Tech-
nology [8] have a modular concept, use the Intel
StrongARM microprocessor, and are capable of
running the Linux operating system. The mod-
ular concept and the powerful platforms are a
good base for the development of wearable com-
puters. Yet they don’t have an approach for dy-
namic system composition with hardware mod-
ules.

The main difference between these projects
and ours is that while these focus on a modu-
lar hardware design, we are attempting to build
a system dynamically with techniques from dis-
tributed computing. Our wearables are com-
posed of modules where each of them is a com-
plete computer with CPU, memory, I/O, and
network connection. This allows us to de-
velop applications on a higher level of abstrac-
tion with component-based software engineering
techniques. We use the hardware modules in the
same way as software components in distributed
component-based systems.

3 Objectives

We see one of the applications of our con-
cepts in production and maintenance, where
blue-collar workers need to use wearable com-
puters with varying functionality. A worker re-
ceives his daily work assignments and for the
various assigned tasks he needs specialized func-
tions with him on his wearable computer. Just
like packing his tool box with physical devices,
he assembles his wearable with the modules he
will need. He can pack his tool box not only with

hammers and screwdrivers but also with special-
ized modules that can be connected to the wear-
able when needed. He also wants to be able to
control objects in the environment, for example
machines, via the wearable computer.

From this scenario we extracted the follow-
ing requirements:

Tool metaphor. The user needs a set of
tools that can be combined very simply by plug-
ging hardware together. It is much easier to
understand how to use things if you can touch
them. Therefore, the complete functionality of
each tool should be encapsulated with a respec-
tive hardware box that can be connected when
needed. For example, for voice recognition, the
microphone should be connected to a hardware
module that runs a complete voice recognition
software.

User comfort and energy reduction.
One important issue is user comfort. In studies
it was shown that it would be best to distribute
parts of the wearable computer on different parts
of the human body [2]. Another important issue
is energy consumption. In [6], among others,
the committee on electrical power for the dis-
mounted soldier proposed a modular hardware
design with dedicated processors for each sub-
system.

Additionally it should be possible to tailor
the hardware to the needed requirements. This
allows compute-intensive services such as an op-
tical tracker to be deployed on dedicated hard-
ware which can be added or removed from the
system at run time. Available functionality is
not always needed in the same quality. For ex-
ample, user tracking can be more or less pre-
cise. If a lower accuracy is acceptable for a spe-
cific task, a more accurate tracking device that
is awkward to wear may be left in the tool box.

Dynamic integration. With ad hoc com-
munication of modules within the network of the
wearable multi-computer we can also extend its
range. This means that services in the envi-
ronment that come within reach can be inte-
grated and used. An example are distributed
user tracking concepts for augmented reality ap-
plications as described in [7]. When the wearable
computer comes into reach of a tracking system
in his environment, the user tracking software on
the wearable and in the environment recognize
each other and set up a temporary connection to
exchange data about the user’s position. When



the user leaves the reach of the external tracker,
the connection is closed.

Resource sharing. In a team where each
member uses a wearable computer, each could
wear special modules with different sensors and
related software on it. The results of these mod-
ules could be distributed wirelessly on the team
and used by an application running on each
wearable computer.

Off-the-shelf modules. Developers of
software systems usually try to reuse software
components. Analogously, for our proposed
wearable computer, the goal is to have a growing
set of modules available to be able to build new
system configurations quickly and easily. This
means that a customer specifies the application
requirements, e.g. for a wearable factory man-
agement application plus location tracking, and
the modules needed for this system are plugged
together for a running system. In addition the
system is filled with application-specific data,
such as 3d models of the factory floor.

4 Concept

From the user’s perspective there are two
types of modules: application modules (Sec-
tion 4.1) and component modules. The for-
mer are modules with user applications, the lat-
ter components that contain functionality for
other modules; technically they are equivalent.
The relationships and dependencies between the
components and the hooks for the application
are described by an architecture. Frameworks
are a combination of components and architec-
ture for a family of applications (Section 4.2);
we give an overview of a concrete framework in
Section 5 where we describe the dwarf proto-
type.

A module contains several Services and a
Service Manager (Section 4.3). Each service is
described by a set of Needs and Abilities. When
a service needs to use other services the service
manager of the module tries to match the needs
with the abilities of other services. When all
needs are matched, the service can offer its own
abilities. Services, Needs, and Abilities are de-
scribed in Section 4.4. The connection between
a need and an ability is called Dynamic Connec-
tion. The set of dynamically connected services

is called Dynamic Configuration of the system
(Section 4.5).

For the cooperation of the modules we pro-
pose a two-step approach. In the first step the
network of cooperating modules is set up and the
means of communication are negotiated. After
this setup, each module knows its communica-
tion partners. In the second step the data flow
is directly between the components without the
overhead of a third party. The existence of the
connection is only temporary while the modules
need to communicate. Afterwards it may be can-
celled on request of the modules.

4.1 Applications

An application module is a module that
contains functionality for the user. Usually it
has only needs but no abilities for other modules.
It also runs on a hardware component and the
user can attach it to the system when needed.
At startup, the application module checks if all
needs can be matched. If so, the application
starts offering services to the user. Usually there
will be more than one application module on the
wearable. Instead of installing application soft-
ware on one module the user clips a new appli-
cation onto his belt when needed.

4.2 Framework

In a system that consists of a set of com-
ponents and their services, a framework de-
scribes the interfaces and dependencies between
the components and the architecture of the sys-
tem. It allows families of applications to be de-
veloped that reuse the components of the frame-
work. Once there is a set of components avail-
able, new components and applications can be
developed that use the existing infrastructure.
Services providing the same type of ability, but
using different techniques, can be exchanged for
testing purposes as well as in final systems.

The interfaces between the modules must be
specified in advance not only syntactically for
the data types but also for the quality of the
data. One example for such a standard interface
that occurs quite often in wearable computing
is the position of an object in six-dimensional
coordinates, including parameters for quality of
tracking accuracy.



4.3 Modules

A module, from the user’s point of view,
is the smallest possible component of the wear-
able computer. Every module has at least one
specific function, such as a camera module for
capturing video data, a gps receiver module for
positioning, or a head-mounted display module
for displaying data. There can also be modules
the user does not directly interact with—these
only provide internal services such as a map of
the world to be shown on the display module.

:Ability :Need

Device

ModuleCore

:Service :Service

ServiceManager

Figure 1. Software view of a module

Every module is self-contained as a physical
device consisting of the hardware and all neces-
sary software for the specific functionality as well
as for the communication with other modules.
Each module must have a service manager. The
user simply has to switch on the device and, if
necessary, perform some minimal configuration;
the integration with the other parts of the sys-
tem is established by the service manager au-
tomatically after the module starts up. Figure
1 shows the structure of a module. The mod-
ule core provides the functionality of the module
and the service manager is responsible to estab-
lish the collaboration with other modules. Any
needed special-purpose hardware is directly con-
nected to the module, for example a video cam-
era.

4.4 Services, Needs and Abilities

A service is a piece of software running on a
module that provides a certain functionality. To
let the services interact, we associate them with
several needs and several abilities. The abilities
can be used by other modules if and only if all

needs of the service can be fulfilled by services
of other modules. Note that a single module can
offer more than one service.

ModuleCore

:Service

:Need

:Type

ModuleCore

:Service

:Ability

Figure 2. Connection between Needs and Abilities

Each need and ability has a specific type,
and abilities can be fulfilled only by needs of the
same type. Also, a need can have a multiplicity
indicating how many abilities of the same type
are required to fulfill this need. Abilities do not
have an explicit multiplicity; every ability can
be used by several needs at once. Figure 2 illus-
trates the relationship between services, needs,
and abilities in a UML Object Diagram.

Quality Parameters. For a good match
between the needs and abilities, it is not enough
only to match the types. Information about the
quality of the offered abilities and about the re-
quired quality of needs is important. An exam-
ple is tracking accuracy.

Therefore, each ability has a set of at-
tributes describing quality-of-service parameters
of that service. Likewise, each need specifies a
predicate about the quality of service it expects.
This predicate is used by the service manager to
select abilities that can provide a sufficient qual-
ity of service to satisfy a given need. This pred-
icate can also be used at runtime to ensure that
the desired quality of service is still provided.
For the prototype we used a simple predicate
based on attribute-value pairs.

Service Description. To let the service
managers know the quality-of-service parame-
ters, each module needs a set of appropriate ser-
vice descriptions. These are then used by the
service manager to match the needs and abilities.
Every service has to describe itself at startup
time to the module’s service manager.

Another possibility is to store descriptions
of installed services with the service manager,
which can then start the services on demand
when their abilities are requested, conserving re-
sources such as battery power. This may be done
using xml.



4.5 Dynamic Configuration

Each module has a service manager to en-
able dynamic configuration. The different lo-
cal service managers communicate over the net-
work, using protocols such as slp [10], and dis-
tribute the information about the services with
their needs and abilities. When eventually all
needs of a service can be fulfilled by abilities of
other services, the service managers create Dy-
namic Connections between the corresponding
needs and abilities. These allocate and config-
ure the necessary communication resources like
event channels or shared memory blocks on both
ends of the connection. The services can access
the communication resources through the con-
nections and use them to communicate with one
another. The advantage of this is that two ser-
vices can decide on the best way to communi-
cate before they actually start communicating.
There is no communication overhead at appli-
cation runtime. To connect the services of two
different modules no additional user interaction
besides plugging the hardware together is neces-
sary. Once the connection is set up, the service
manager is not involved in the actual commu-
nication, although it can break connections or
dynamically reconnect them to other services.

5 Prototype

Our concepts of a modular wearable com-
puter were first tested within the dwarf (Dis-
tributed Wearable Augmented Reality Frame-
work) project [1, 3]. dwarf is an ongoing re-
search project with the goal of providing general
software services for augmented reality applica-
tions which can run on a wearable multi-compu-
ter. Figure 3 gives an overview of the services,
divided by functional categories.

For the first prototype, we used dwarf to
build a wearable indoor and outdoor navigation
system. The user’s position, a two-dimensional
or three-dimensional map and the route to his
destination were shown in a see-through head-
mounted display.

dwarf includes several different Trackers,
which can establish the position of things, a
World Model , which can store position infor-
mation and other attributes of real and virtual
things (among others, we used optical, gps and

Services

Information

Application

User

World

Bootstrapping

Initialization

Glue Logic

Optical Tracker

GPS Tracker

Room Tracker

UI Engine Speech

VRML Display

World Model

Tracking Mgr

Taskflow Engine

Print Service

Path Service Context Router

Figure 3. Subsystem decomposition

magnetic compass trackers), a Taskflow Engine
(executes the navigation instructions), several
different kinds of User Interface Devices such as
a head-mounted display and voice input, a User
Interface Engine, and a Context-Aware Packet
Routing Service.

The Application uses the framework to
build an augmented reality system. For our
demonstration system, the application mainly
provided bootstrapping functionality to let the
user select navigation instructions to download,
initiate the wireless transfer, and pass the down-
loaded data to the dwarf services.

The deployment hardware for a wearable
computer ideally should be tiny, lightweight, and
fast at the same time. Nevertheless, for our first
prototype we decided to use two standard PC
laptops mounted on a fixed frame backpack as
shown in Figure 4. In our opinion, this restric-
tion is tolerable, since the focus of our project
was on software rather than hardware, and sev-
eral quite powerful wearable hardware platforms
that could be used for our purpose are already
under development.

We developed our first prototype on a va-
riety of platforms, including Linux for Intel,
Linux for PowerPC, Windows 2000, and Macin-
tosh, and finally deployed it on two Windows 98
and NT laptops respectively, connected with
standard ethernet cables and wireless ethernet
for external services. Additional peripheral de-
vices included a FireWire camera, a gps receiver
and a head-mounted display. All devices are
battery-powered, and the time of operation is
more than two hours.



Figure 4. DWARF conceptual prototype

6 Conclusion and Future Work

The experiences gained by the implemen-
tation of dwarf are very encouraging. First of
all, the implementation of the scenario took only
three weeks’ time, which is rapid prototyping at
its best. Furthermore, although not all compo-
nents were, the middleware was robust and us-
able, proving the value of the concept of a self-
assembling modular wearable computer.

The current implementation of the mid-
dleware and of the dwarf system needs to
be tested, extended and optimized, as well as
ported to smaller systems such as Linux on
StrongARM processors. Currently we are going
to deploy dwarf on a set of Compaq iPaqs.

Important development areas are security
and error handling, which present fundamental
problems in ad hoc systems; roaming and hand-
over in wireless networks; and more detailed
quality-of-service parameters. Also, we would
like to add a Contract Manager to the service
manager on each module which would enhance
the flexibility of the service connections at run-
time.

Acknowledgements

The authors would like to thank Christoph
Vilsmeier, Florian Michahelles, Stefan Riß, and
Bernhard Zaun for their work with us on the

concepts, design and implementation of the first
version of dwarf. Additionally, we would like
to thank Siemens AG for their support in the
related AiRGuide project, which provided the
inspiration for our campus navigation scenario.

References

[1] Dwarf Project Homepage. Technische
Universität München,
http://www.augmentedreality.de.

[2] W. Barfield, S. Mann, K. Baird,

F. Gemperle, C. Kasabach, J. Stivoric,

M. Bauer, R. Martin, and G. Cho,
Computational Clothing and Accessories, in
Fundamentals of Wearable Computers and
Augmented Reality, Lawrence Erlbaum
Associates, 2001, pp. 471–509.

[3] M. Bauer, B. Bruegge, G. Klinker,

A. MacWilliams, T. Reicher, S. Riß,

C. Sandor, and M. Wagner, Design of a
Component-Based Augmented Reality
Framework, in Proceedings of ISAR 2001,
IEEE Computer Society, 2001, pp. 124–133.

[4] Carnegie Mellon Wearable Group, The
Wearable Group: Spot. Carnegie Mellon
University,
http://www.wearablegroup.org/hardware/
spot/index.html.

[5] D. W. Carroll, Key Idea Development,
Wearable Personal Computer System, Patent
No. US5555490, 1996.

[6] Commitee on Electrical Power for the

Dismounted Soldier, ed., Energy-efficient
Technologies for the Dismounted Soldier,
National Academy Press, 1997.

[7] G. Klinker, T. Reicher, and B. Brügge,
Distributed User Tracking Concepts for
Augmented Reality Applications, in
Proceedings of ISAR 2000, Munich, Oct. 2000,
pp. 37–44.

[8] Lart, Project Home Page. TU Delft,
http://www.lart.tudelft.nl, 2001.

[9] MIThril, Project Home Page. Massachussets
Institue of Technology,
http://www.media.mit.edu/wearables/
mithril/.

[10] Service Location Protocol.
http://www.svrloc.org, Feb. 2001.

[11] ViA Inc., Home Page.
http://www.via-pc.com.

[12] M. Weiser, The computer of the twenty-first
century, Scientific American, (1991),
pp. 94–100.

[13] Xybernaut Corporation, Home Page.
http://www.xybernaut.com.


	1 Introduction
	2 Related Work
	3 Objectives
	4 Concept
	4.1 Applications
	4.2 Framework
	4.3 Modules
	4.4 Services, Needs and Abilities
	4.5 Dynamic Configuration

	5 Prototype
	6 Conclusion and Future Work

