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Abstract— Studierstube and DWARF are modular Augmented
Reality frameworks, each with distinct advantages in different
application areas. Both can easily be extended by adding new
components. In this case study we show how new components
can act as a bridge between the frameworks. By facilitating the
exchange of basic data types such as pose and user input, the
frameworks become interoperable. This allows us to build new
applications leveraging the advantages of both frameworks, while
fostering cooperation between research groups.

I. I NTRODUCTION

A. Motivation

Almost all Augmented Reality (AR) systems developed over
the last few years are either aimed at improving certain aspects
of AR such as tracking and user interaction, or attempting to
take AR into new application domains, ranging from aircraft
wireboard assembly [7] to interactive theaters [6]. However,
very little research has focussed on applying software engi-
neering principles to the creation of reusable AR architectures.

This paper describes how component-based design of
AR frameworks allows the easy integration of results ob-
tained from different research projects, even if the primary
goals of these projects are distinct. We show how the
component-oriented design of both the Studierstube [25] and
the DWARF [3] frameworks for AR systems allow us to
encapsulate the particular strengths of each framework in
components and then combine these components to create a
system that is more than just the sum of its parts.

First we examine the related work and describe in detail the
key features of DWARF and Studierstube and how they are
used in typical scenarios. Technical details are then provided as
to how the systems are capable of interacting seamlessly on the
component level. Finally, a scenario is described illustrating
some of the new possibilities for AR applications which can
be developed using this approach.

B. Related Work

Research and commercial activities in Software Engineering
provide strong evidence that componentizing software makes it
reusable. The two most important comercial component-based
frameworks are Microsoft .NET [19] and SUN ONE [28]. Both
define a component model and communication mechanisms.
These frameworks are often used to build client-server systems
such as web applications. Several experimental frameworks
support context-aware computing, e.g. GaiaOS [23], [12],

Ninja [10], Aura [9], Oxygen [20], PIMA [2], Cooltown [14]
or the Sentient Computing project [1]. Augmented Reality can
be regarded as a subset of context-aware mobile computing,
however, none of these projects (with the possible exception
of the Sentient Computing Project) specifically addressed the
requirements of AR such as the provision of low latency
tracking data.

The Sentient Computing project used a wide-area ultrasonic
location system, and other sensors to update a model repre-
senting environmental state. This model was built from compo-
nents based on persistent CORBA objects, each corresponding
to an associated real-world object. This component-based
approach not only achieved the Software Engineering goals of
code reusability and maintainability but also provided a natural
interface which made it appear to users that their perceptions
of the environment were shared directly by the system. A
QoS scheme was responsible for sharing system resources
between AR [21] services (demanding high bandwidth low
latency data) and less needy context-sensitive applications.

A number of other AR frameworks have been developed,
notably COTERIE [16], AMIRE [8] and VRJuggler [5]. For
the most part both COTERIE and VRJuggler operate at the
level of the scene graph in a similar fashion to Studierstube,
whereas AMIRE is more closely related to DWARF in its
formal distribution of components as “gems” and “MR com-
ponents”. Other libraries such as ARToolKit [13] and the MR
platform [29] greatly facilitate the development of new AR
systems. However, the use of such libraries generally results
in monolithic systems. The DWARF and Studierstube projects
arguably provide the strongest component-based approach to
implementing an AR framework.

In this paper, we describe the integration of these two
frameworks. To our knowledge, no previous effort has been
made to systematically combine two existing AR systems,
besides the inclusion of libraries such as ARToolKit.

II. K EY FEATURES OF THEFRAMEWORKS

In this section, we describe the basic components of the two
frameworks, and the features they support.

Studierstube, its OpenTracker library [22], and DWARF
each consist of modular components, although typically these
are of different granularity. Extensions to Studierstube and
DWARF typically consist of the addition of new components.



Several basic data types exchanged by the frameworks’ com-
ponents are similar, such as 6-DOF pose, and input device
data. Thus, we can create adapter components that are part of
both frameworks to facilitate interoperation.

Since both frameworks were designed to make the addition
of new components simple, developing the adapter compo-
nents was straightforward. In fact, we were able to develop
one such component, which allows OpenTracker to send pose
data to DWARF, in a single afternoon of joint programming.

Below, we describe the basic components of DWARF and
Studierstube in order to explain the adapter components.

A. DWARF

The basic units of the DWARF framework are distributed
services. A service is a piece of software running on a
stationary or mobile computer that provides a certain piece
of functionality such as optical tracking. DWARF contains
services for position tracking, 3D rendering, multimodal input
and output, and modeling of user tasks. The framework can
easily be extended by adding new services or improving
existing ones.

Following the tool metaphor [4], the services and their
associated support software is bundled with hardware in units
that are easily understandable to the user, such as an HMD
with a 3D rendering laptop, or a palmtop with a menu
interface. The services are realized as individual processes or
threads, run on different mobile and stationary computers and
connect dynamically using wired or wireless networks.

This dynamic connection and loose coupling supports the
building of flexible Augmented Reality applications in Ubiq-
uitous Computing environments. Systems we have built so
far [3], [24], [15] consist of between 10 and 50 services.
The DWARF services themselves are designed to support run-
time reconfiguration in order to provide high flexibility to the
user. Examples include multimodal interaction services using
dynamically chosen interaction devices, and a simple run-time
marker recalibration service.

Distributed CORBA-based middleware manages the ser-
vices. Each DWARF system network node has oneservice
manager; there is no central component. Each service manager
controls the node’s local services and maintains descriptions
of them. The service managers cooperate with each other to
set up connections between services.

To model what a service can offer to other services and
what it needs from other services, we use concept ofneedsand
abilities. A match of one service’s need to another service’s
ability leads to a connection between the services; this is set
up by the distributed service managers.

Abilities describe the functionality a service provides, such
as position data for optical markers. A service can have several
abilities, such as an optical tracker that can track several
markers simultaneously. Abilities are typed; an example is
PoseDatafor 6D pose.

Needsdescribe the functionality required of other services.
For example, an optical tracker needs a video sequence and
descriptions of the markers it should detect, and a 3D renderer

needs the position and orientation of the viewpoint it should
render the scene from. Needs are also typed, and only abilities
of the same type can satisfy a need.

The communication protocols currently supported in
DWARF are CORBA notification service events, shared mem-
ory, and remote method calls. Most of the communication in
typical DWARF systems uses events, with predefined struc-
tures for types such asPoseData. In Section III, we describe
how these events can be used in Studierstube’s OpenTracker
data flow graphs and OpenInventor scene graphs.

B. Studierstube

Studierstube’s software development environment is real-
ized as a collection of C++ classes built on top of the Open
Inventor (OIV) toolkit [27]. The rich graphical environment of
Open Inventor allows rapid prototyping of new applications.
The file format of Open Inventor enables convenient scripting,
overcoming many of the shortcomings of compiled languages
without compromising performance. At the core of Open In-
ventor is an object-oriented scene graph storing both geometric
information and active interaction objects. Our implementation
approach has been to extend Open Inventor as needed, while
staying within Open Inventor’s strong design philosophy [30].

This has led to the development of two intertwined com-
ponents: a toolkit of extensions of the Open Inventor class
hierarchy – mostly interaction widgets capable of responding
to 3D events – and a runtime framework that provides the nec-
essary environment for Studierstube applications to execute.
Together, these components form a well-defined API, which
extends the Open Inventor API and also offers a convenient
programming model to the application programmer.

Applications are written and compiled as separate shared
objects and dynamically loaded into the runtime framework.
The shared objects are treated as singletons so that only one
instance of each applications code is loaded into the system at
any time. Besides decoupling application development from
system development, dynamic loading of objects also sim-
plifies distribution, as application components can be loaded
by each host whenever needed. All these features are not
unique to Studierstube, but they are rarely found in Virtual
Environment software.

Studierstube also supports distributed execution of appli-
cations by providing a shared scene graph library called
Distributed Open Inventor [11] (DIV) implemented using a
reliable multicast protocol. In contrast to the DWARF model,
DIV provides a closely coupled distribution service where each
host is running a fully replicated instance of a distributed
application. Because applications are implemented as scene
graph nodes, they can be replicated as well. This is used at
startup to stream a copy of an application to all members of
a session, to update late joining hosts of the current status or
to implement ubiquitous applications that move between hosts
[26].

To accommodate tracking devices Studierstube relies on
OpenTracker, a dedicated library that implements a pipe- filter
architecture to operate on tracking data. The main concept



behind OpenTracker is to break up the required transforma-
tion of data manipulation into individual, smaller steps and
build a data flow network of these generic operations. Such
operations include reading data from devices, transforming it
to fit the requirements of the application and sending over
network connections to other hosts. Such data flow network
is configured with an XML based input file which is read at
startup.

OpenTracker already provides a large number of individual
nodes implementing different steps. Source nodes provide
device drivers for magnetic, ultrasonic, and inertial trackers,
GPS receivers, or virtual devices such as keyboard and mouse
events, files or network connections. Filter nodes reside in
within the framework and provide geometric transformations,
smoothing and merging of data, selecting between different
sources. Sink nodes finally provide the transformed data to
applications, send it over network connections or provide
debugging output to files and consoles.

III. G ENERIC ADAPTERS

To leverage both Studierstube and DWARF, we identified
two possible bridging points. First we show how an Open-
Tracker network can be used as a DWARF service or con-
versely DWARF can be used to connect different OpenTracker
networks together dynamically.

Then we describe how an arbitrary DWARF service that
sends or receives events can be embedded in an Open Inven-
tor scene graph such that it can be used in a Studierstube
application.

A. OpenTracker↔ DWARF

The first step is the integration of the low-level tracking data
framework OpenTracker into the DWARF system. The Open-
Tracker library is extensible with modules that encapsulate
interfaces to devices, other software frameworks or algorithms.
These modules drive nodes in the tracking graph that can
generate new events, consume events or transform them. We
designed a new DWARF module for OpenTracker that im-
plements two types of nodes, aDwarfSinkand aDwarfSource
node. The module is responsible for the DWARF specific setup
of the service and the needs and abilities corresponding to
these nodes (see fig. 1).

A DwarfSink node is mapped to a set of abilities of a
DWARF service serving as output of a given tracking graph,
while a DwarfSourcenode is mapped to a set of needs of a
DWARF service and inputs data into the graph. The module
implements a full DWARF service that dynamically exposes its
descriptions of needs and abilities based on the OpenTracker
configuration. Therefore a single standalone OpenTracker pro-
gram can act as a complete DWARF service. Depending on
the application, the complexity of the OpenTracker network
inside such a DWARF service can vary from large networks
for a specific application to small networks containing just a
few nodes for rather dynamic scenarios, as seen in figure 2.

OpenTracker defines a simple data type for events consisting
of pose data using 3 floats for position, 4 floats for orientation
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in quaternion format, a 16 bit value to store the state of 16
buttons, a time stamp and a confidence value in the range
0 to 1. This data type is mapped on a fixed set of DWARF
types using one instance ofPoseDatato store the position and
orientation information and a set of up to 16InputDataBool
instances to store button values. A corresponding set of
abilities is defined for eachDwarfSink and a set of needs
for eachDwarfSource. Figure 1 shows an encapsulation of
an OpenTracker network into a DWARF service with the
corresponding needs and abilities of typePoseData.

B. Open Inventor↔ DWARF

To integrate DWARF with the Studierstube framework in
general, we defined a more powerful mapping between the
Open Inventor framework and DWARF. Open Inventor sup-
ports the notion of nodes in a scene graph that contain fields
of a predefined set of types such as single or multiple values of
floats, doubles, integers, vectors, rotations and matrices. Using
a set of custom nodes we can model a DWARF service that
sends or receives events directly.

A DwarfServicenode represents a single DWARF service. It
provides fields to configure the general parameters of a service
such as the service manager to use. Moreover it contains lists
of subnodes that describe its needs and abilities. These are
modelled by aDwarfNeedandDwarfAbility node respectively.



struct PoseData {
ThingID id; // a string
ThingType type; // a string
double position[ 3 ];
double orientation[ 4 ];
double positionAccuracy;
double orientationAccuracy;
Time timestamp;

};

⇐⇒

PoseData {
SoSFString id
SoSFString type
SoSFVec3f position
SoSFRotation orientation
SoSFFloat positionAccuracy
SoSFFloat orientationAccuracy
SoSFTime timestamp

}

Fig. 3

A DWARF EVENT TYPE DEFINED IN IDL AND ITS CORRESPONDINGOPEN INVENTOR NODE DEFINITION.

Each node exposes fields to set the attributes and predicates
of the DWARF counterparts.

The individual DWARF event types are mapped to different
Open Inventor node types. Each node type defines fields for the
components of the corresponding event type (see fig. 3). The
DwarfNeedandDwarfAbility nodes then contain subnodes of
the type corresponding to their Dwarf event type. ADwarf-
Neednode exposes incoming events by setting the field values
of its subnode. ADwarfAbility node observes its subnode and
fires new events to any connected services for any changes to
the subnodes fields.

The description of Open Inventor nodes allows any Studier-
stube application to describe a DWARF service purely within
the scene graph. The exposure of event data as fields leverages
the typical Open Inventor mechanisms of field connections,
sensors and callbacks to establish the data flow between
application code and the DWARF adapter. Therefore DWARF
services can be integrated without any additional knowledge
on the side of the programmer.

C. Implementation status

The integration of DWARF and OpenTracker as described
in section III-A has already been implemented in a single one-
day-effort. The adapter to integrate arbitrary DWARF services
in any Open Inventor application from section III-B has been
exhaustively designed, but is currently being implemented.

IV. SYSTEM INTEGRATION: THE SMART HOSPITAL

In this section we describe a visionary scenario that can
be realized with a combination of DWARF, Studierstube and
OpenTracker components.

Medical scenarios provide very compelling Augmented Re-
ality applications as clinicians are well trained, and hospitals
are already full of sophisticated technology. The usage of
PDAS as mobile knowledge bases is currently becoming a
standard technique among doctors1. Clinical infrastructure,
while being designed to handle very diverse tasks and disparate
forms of data, would ideally achieve some degree of integra-
tion (through wired and wireless networks) to form coherent
sentient spacesin which the environment becomes responsive
to its occupants and particularly sensitive to the needs of
medical staff. The scope for developing Augmented Reality
applications in such an environment is huge, but different

1see e.g.http://www.neuroguide.com/aan pda.html for a list of available
knowledge sources for PDAS in medicine.

situations will demand very different characteristics from the
underlying framework.

One such scenario might involve the provision of virtual
presence to remote clinicians in an operating theatre during
surgical procedures. Virtual presence would, for example en-
able a specialist consultant to easily examine the operation
from different viewpoints while communicating to the surgeon
(through a separate voice channel) with clinicians on the spot
and possibly to manipulate diagnostic and other instruments.
An extension of such a scenario would allow many students
to be “virtually present” during a surgical procedure. Similar
“virtual operating theatre” demonstrators already exist but do
not operate in real-time and are entirely video-based reducing
the scope for remote interaction due to occlusion.

The people present in the operating theatre would be tracked
with an accurate commercial tracking system, whilst remote
participants may use the same location technology or cheaper,
simpler devices (with fewer modes of interaction) allowing
them to view real-time synthesised, enhanced, and augmented
views of the activity in the theatre.

The way in which sensory data generated by the loca-
tion system is handled and provided to on-site and remote
participants will depend on the nature of the infrastructure
(such as trackers, and display end-points) as well as network
constraints. Studierstube would be the tool of choice for
representing and rendering complex 3D medical data (e.g.
real-time bloodflow, or important biological structures) in the
form of a scene graph which could be shared across multiple
hosts through the DIV mechanism. However, spontaneous
behaviour such as new users joining a session (or other users
leaving) would be better managed by DWARF services, which
would automatically perform the necessary connections and
disconnections to the different data sources and sinks based
on the availability of resources, and the requirements of the
clients. In case the connections cannot be set up completely
automatically, the DWARF Selector service [17], can be used
to resolve ambiguities. This service has already been deployed
on PDA devices, which would be a convenient device for the
doctors to use, because they are already using them for access
to knowledge bases.

V. CONCLUSION AND FUTURE WORK

An AR application developer can produce more elegant
solutions when given a choice between all the components
from Studierstube, OpenTracker and DWARF. For example,

 http://www.neuroguide.com/aan_pda.html


while Studierstube has not explicitly adressed the issue of mul-
timodal interactions the DWARF User Interface Controller[18]
can merge input distributed over several modalities into a
single DWARF event representing the user’s intention. An
adapter (see section III-B) can then translate the DWARF
event into an Open Inventor field change, which observed by
Studierstube interaction objects.

By combining DWARF and OpenTracker we not only
reduce the overhead of writing device drivers and filter objects
multiple times. Additionally, we obtain a powerful combina-
tion of static local setups defined by OpenTracker networks
which can be dynamically combined to form large scale
DWARF applications in Ubiquitous Computing environments.

To our knowledge this was the first time two AR frameworks
were rendered interoperable. We believe that this approach
could start a positive trend in the Augmented Reality commu-
nity. An ongoing discussion of the advantages of interoperabil-
ity as other frameworks develop and mature can only benefit
the field as a whole.
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