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Summary

�Concepts and technologies for self-assembling mobile
AR systems

�Design of the Middleware for DWARF

� First implementation of the Middleware,
validating the design
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Self-Assembling AR Systems
�Context: a user is roaming through an intelligent environ-

ment with a mobile AR system.

�Goal: his mobile system should automatically take advan-
tage of devices in the environment, such as external trackers.
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Self-Assembling AR Systems
�Context: a user is roaming through an intelligent environ-

ment with a mobile AR system.

�Goal: his mobile system should automatically take advan-
tage of devices in the environment, such as external trackers.

� Idea:

•Divide the system into different Services for tracking,
display, etc.

•Deploy the Services on different mobile and station-
ary computers

•As they come within range of one another, the Ser-
vices assemble into a complete AR system

�This requires intelligent Middleware .
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Requirements (1)

�Functional Requirements

�DWARF consists of self-assembling Services.
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Requirements (1)

�Functional Requirements

�DWARF consists of self-assembling Services.

�These Services must be able to find each other...

� ...and communicate with one another.
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Requirements (2)

�Nonfunctional Requirements

� For convincing AR, we need fast communication with low
latency.

�To use ad-hoc Services as they are found, however, we need
to choose the communication partners flexibly.

�This is a conflict in design goals.

�The design of the middleware must balance flexibiliy against
speed.
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Requirements (3)

�Mediator Role of the Middleware

�The DWARF Services are designed as independently of one
another as possible, so they can be combined into different
applications.

� For them to cooperate, we used the Mediator pattern.
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System Design (1)

�Distributed Mediating Agents

� If the middleware becomes a central component , it reduces
fault tolerance and flexibility.

� Instead, I used Distributed Mediating Agents .
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System Design (2)

� Subsystem Decomposition

�Communication is fast

� Location is flexible

� Service Manager provides high-level interface
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System Design (3)

� Subsystem Interaction
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System Design (3)
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System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�Establish communication

�

�
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System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�Establish communication

�Activate Tracker

�
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System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�Establish communication

�Activate Tracker

�Communicate
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System Design (4)

� Service Manager: Service Descriptions

�Each Service has a description that can be written in XML

�These describe Services’ Needs and Abilities

�They also specify communication protocols
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System Design (5)

� Location Subsystem

�Various mechanisms are available to locate ad-hoc services:
SLP, Jini, UPnP, SDP, etc.

�None address AR, many are for home networking

�The Location Subsystem defines a strategy pattern to use
these different protocols

�The current version is designed to use the Service Location
Protocol (SLP), a simple and open standard
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System Design (6)

�Communication Subsystem

�The DWARF components have different communication
needs

�The Communication Subsystem can encapsulate many dif-
ferent protocols

� It currently supports:

•CORBA remote method calls

•Event-based communication with the CORBA Noti-
fication Service
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System Design (7)

� Summary—Design Challenges

�The Middleware needs to be fast, yet flexible

•Decomposition into Communication and Location sub-
systems

�The Middleware should not have to be in the middle

•Distributed Mediating Agents

� Services that do not know each other have to cooperate

• Service Descriptions with Needs and Abilities
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Results

�Complete Design for a flexible, yet fast middleware system

� Supports roaming users in intelligent environments

� Systems built with DWARF can spontaneously self-assemble

� First implementation was successfully demonstrated on Linux
and Windows, Intel and PowerPC

15



Future Work

� Further implementation:

◦ Full SLP support

◦ Full XML support

◦ Optimizing of communication resources

◦ Graceful handling of network errors

�Visualization tools

�Testing with different types of Services in different applica-
tion domains
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Thank You
Questions?
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