
Using Ad-Hoc Services

for Mobile Augmented Reality Systems

Asa MacWilliams



Summary

�Concepts and technologies for self-assembling mobile
AR systems

�Design of the Middleware for DWARF

� First implementation of the Middleware,
validating the design

2



Outline

� Self-Assembling AR Systems 3

� Requirements 4

� System Design 7

� Results 14

� Future Work 15

3



Self-Assembling AR Systems
�Context: a user is roaming through an intelligent environ-

ment with a mobile AR system.

�Goal: his mobile system should automatically take advan-
tage of devices in the environment, such as external trackers.

4



Self-Assembling AR Systems
�Context: a user is roaming through an intelligent environ-

ment with a mobile AR system.

�Goal: his mobile system should automatically take advan-
tage of devices in the environment, such as external trackers.

� Idea:

•Divide the system into different Services for tracking,
display, etc.

•Deploy the Services on different mobile and station-
ary computers

•As they come within range of one another, the Ser-
vices assemble into a complete AR system

�This requires intelligent Middleware .

4



Requirements (1)

�Functional Requirements

�DWARF consists of self-assembling Services.

5



Requirements (1)

�Functional Requirements

�DWARF consists of self-assembling Services.

�These Services must be able to find each other...

5



Requirements (1)

�Functional Requirements

�DWARF consists of self-assembling Services.

�These Services must be able to find each other...

� ...and communicate with one another.

5



Requirements (2)

�Nonfunctional Requirements

� For convincing AR, we need fast communication with low
latency.

�To use ad-hoc Services as they are found, however, we need
to choose the communication partners flexibly.

�This is a conflict in design goals.

�The design of the middleware must balance flexibiliy against
speed.

6



Requirements (3)

�Mediator Role of the Middleware

�The DWARF Services are designed as independently of one
another as possible, so they can be combined into different
applications.

� For them to cooperate, we used the Mediator pattern.

Optical Tracker VRML Display

UI EngineWorld Model

Mediator

Tracking MgrGPS Tracker

7



System Design (1)

�Distributed Mediating Agents

� If the middleware becomes a central component , it reduces
fault tolerance and flexibility.

� Instead, I used Distributed Mediating Agents .

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

VRML Display
Tracking MgrGPS Tracker

World Model UI Engine

Mediating Agent Mediating Agent

Optical Tracker

8



System Design (2)

� Subsystem Decomposition

�Communication is fast

� Location is flexible

� Service Manager provides high-level interface

DisplayCommunicationTracker

Service Manager

Location

Service Manager

Communication

Location

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

9



System Design (3)

� Subsystem Interaction

�Everything off

�

�

�

�

�

Service Manager

Communication

Location Location

Service Manager

Communication

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

Tracker Display

10



System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

�

�

�

�

Service Manager

Communication

Location Location

Communication

Service Manager

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

DisplayTracker

10



System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�

�

�

Service Manager

Communication Communication

Service Manager

LocationLocation

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

DisplayTracker

10



System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�Establish communication

�

�

Service Manager

CommunicationCommunication

Service Manager

LocationLocation

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

DisplayTracker

10



System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�Establish communication

�Activate Tracker

�

LocationLocation

Communication Communication

Service ManagerService Manager

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

DisplayTracker

10



System Design (3)

� Subsystem Interaction

�Everything off

�Display starts

� Location

�Establish communication

�Activate Tracker

�Communicate

LocationLocation

Service Manager

Communication Communication

Service Manager

TrackingBox:LinuxNotebook DisplayBox:WindowsNotebook

DisplayTracker

10



System Design (4)

� Service Manager: Service Descriptions

�Each Service has a description that can be written in XML

�These describe Services’ Needs and Abilities

�They also specify communication protocols

PositionData:Ability VideoData:Ability MarkerPositions:Need

OpticalTracker:Service

11



System Design (5)

� Location Subsystem

�Various mechanisms are available to locate ad-hoc services:
SLP, Jini, UPnP, SDP, etc.

�None address AR, many are for home networking

�The Location Subsystem defines a strategy pattern to use
these different protocols

�The current version is designed to use the Service Location
Protocol (SLP), a simple and open standard

12



System Design (6)

�Communication Subsystem

�The DWARF components have different communication
needs

�The Communication Subsystem can encapsulate many dif-
ferent protocols

� It currently supports:

•CORBA remote method calls

•Event-based communication with the CORBA Noti-
fication Service

13



System Design (7)

� Summary—Design Challenges

�The Middleware needs to be fast, yet flexible

•Decomposition into Communication and Location sub-
systems

�The Middleware should not have to be in the middle

•Distributed Mediating Agents

� Services that do not know each other have to cooperate

• Service Descriptions with Needs and Abilities

14



Results

�Complete Design for a flexible, yet fast middleware system

� Supports roaming users in intelligent environments

� Systems built with DWARF can spontaneously self-assemble

� First implementation was successfully demonstrated on Linux
and Windows, Intel and PowerPC

15



Future Work

� Further implementation:

◦ Full SLP support

◦ Full XML support

◦ Optimizing of communication resources

◦ Graceful handling of network errors

�Visualization tools

�Testing with different types of Services in different applica-
tion domains

16



Thank You
Questions?

17


	Title
	Summary
	Outline
	Self-Assembling AR Systems
	Requirements
	System Design
	Results
	Future Work

