
Design Patterns for Augmented Reality Systems

Asa MacWilliams, Thomas Reicher, Gudrun Klinker, Bernd Bruegge
Lehrstuhl f̈ur Angewandte Softwaretechnik

Institut für Informatik, Technische Universität München
(macwilli|reicher|klinker|bruegge)@in.tum.de

ABSTRACT
For documentation and development of augmented real-
ity (AR) systems, we propose the use of design patterns.
Patterns are structured descriptions of successfully applied
problem-solving knowledge. They describe a specific de-
sign problem, the particular design context, and a generic
solution scheme. The solution scheme specifies the involved
components, their responsibilities, relationships and the way
they cooperate.

We see design patterns as the right abstraction for the docu-
mentation of AR systems. A common language based on de-
sign patterns allows the use of common, well-known terms
among developers of AR systems. Examples are terms such
asscene graph-based renderingandnetworked trackers.

With a catalogue of patterns, developers of AR systems can
more easily identify existing solutions to design problems.
For this, we must identify relations and dependencies among
individual patterns. The goal is the systematic ordering of
the individual patterns into a system of patterns. Such a pat-
tern system shows the interdependencies among the patterns.
For example, aVRML web pluginenables easy embedding
of AR content into web documents, but in turn requires a
web server, which is unsuited for autonomous systems.

This paper is the continuation of a discussion we started at
the STARS 2003 workshop [13]. We have already identified
some 30 design patterns for AR. Most of the patterns will
also be relevant for mixed reality systems. In this paper, we
present our existing catalog of design patterns and discuss
the findings. In particular, we consider it as important to find
the right name for each pattern, to bring forward discussion
in the developer community.

INTRODUCTION
The discussion and comparison of different software archi-
tectures for Augmented Reality (AR) is often difficult be-
cause of the different ways the developers document them.
They use different notations, different abstraction levels, and

have different intentions.

Often a specific application belongs to a class of applica-
tions, thedomain. For each domain, there are specific func-
tional and non-functional requirements which are mapped to
common functions. In each architecture, these functions are
implemented by subsystems. And for the implementation of
a subsystem, a developer uses a particularapproach. In a
given domain such as augmented reality, similar or identi-
cal approaches are used by various developers. Often this
stems from the common use of software components or li-
braries that implement the same functionality, e.g.OpenIn-
ventor. The result is a vocabulary of common terms that are
understood by most augmented reality developers. This en-
ables discussion and comparison of software architectures.
To classify the approaches, we extracted an abstract generic
architecture for augmented reality systems [14] from the de-
scriptions of existing systems. A software architecture for
AR can be described by the set of approaches used in the
system.

While a set ofapproachesallows us to discuss existing aug-
mented reality systems, it is only of little use for the design
of new systems. For this, we must measure each approach
within a certain context. The catalogue of known approaches
then can mature to a system of knownpatterns. Each pattern
must state the context where it is used, the problem it solves
and the solution. In software architecture, patterns are struc-
tured descriptions of successfully applied problem-solving
knowledge. Each pattern is described by name, goal, moti-
vation, description, usability, consequences, and known use,
as in [7, 16].

In this paper, we present the current state of our catalog of
AR design patterns. In order to fulfill its goal of improving
communication and collaboration between AR researchers,
this system of patterns requires extensive discussion within
the AR research community. We have set up a web site for
this purpose1 and invite members of the AR research com-
munity to join us in improving and extending the patterns.

AN AUGMENTED REALITY REFERENCE MODEL
A study of the various augmented reality systems [12] re-
vealed that in spite of being quite different in detail, most
augmented reality systems share a common basic architec-
tural structure. In addition, many basic components and sub-

1http://wwwbruegge.in.tum.de/projects/
lehrstuhl/twiki/bin/view/ARPatterns

1

http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/ARPatterns
http://wwwbruegge.in.tum.de/projects/lehrstuhl/twiki/bin/view/ARPatterns


World Model

World Model World Model 
Manager

Application

Application

Presentation

3D Image 
Generator

Output 
Interface

3D 
Renderer

Control 
Feedback

Context

Context 
Manager

Interaction

Input
 Device

Input 
Processor Tracking

Tracker

Figure 1: Generic augmented reality reference architec-
ture

systems can be found in many different systems, e.g. various
trackers or a scene graph. This is not surprising, as all aug-
mented reality systems are interactive systems and the core
functionality of augmented reality is the same for all sys-
tems: tracking the user’s position, mixing real and virtual
objects, and processing and reacting to context changes and
user interactions.

This commonality of the core functionality among the dif-
ferent AR systems allows us to specify a descriptive refer-
ence model for augmented reality systems. We decompose
an augmented reality system into six core subsystems. Each
subsystem provides a particular functionality for the whole
system.

Application subsystem. The abstract Application subsys-
tem is a placeholder for all application specific code.

Interaction subsystem. The Interaction subsystem gathers
and processes any input that the user makes deliberately.
We distinguish it from other input such as by changing
position.

Presentation subsystem.The Presentation system displays
output for the user. Besides 3D augmentation, this also
includes other media such as 2D text or speech.

Tracking subsystem. Tracking the user’s pose is another
key functionality of augmented reality systems. The
tracking subsystem is responsible for tracking the user’s
pose and providing it to other subsystems such as the pre-
sentation subsystem.

Context subsystem.The Context subsystem collects differ-
ent types of context data and makes it available to other
subsystems. Examples include user preferences and the
current user task. Although the user’s pose can be consid-
ered as part of the user’s context, tracking is so essential
to augmented reality that we separate the Tracking and
Context subsystems.

World model subsystem. In augmented reality, the user
moves in the real world and obtains information linked
to real-world objects or user positions. Information about
the world is stored in a world model. Similar to tracking,
the world related information is of a particular interest for
augmented reality systems design.

Each subsystem consists of several components. Figure 1
gives an overview of the identified subsystems and the main
components. Subsystems are shown as UML packages
which contain components. Each component in turn may
be realized by other components. There are dependency re-
lationships between the subsystems, illustrated with dashed
lines. A dependency shows that a subsystem relies on inter-
faces of of another subsystem.

The abstract reference model describes the general compo-
nents and structure of augmented reality systems. However,
depending on the functional requirements of a particular sys-
tem, some of the components may be left out. For exam-
ple, a video mixer component is not required for optical see-
through augmented reality.

The abstract structure that we use for augmented reality sys-
tems is similar to the Model/View/Controller (MVC) pat-
tern [8]. The MVC pattern separates interactive systems into
subsystems for the Model, Views of the Model, and a Con-
troller for the data flow. The Model encapsulates application
data, provides access and manipulation methods, and pro-
cesses input from the controller; the View represents user
information, updates on changes in the model, and creates
the Controller; the Controller is related to a View, provides
user input methods, forwards events to the Model, and initi-
ates changes in the View. To conform to terms used in HCI
research we call the ViewPresentation, and the Controller
Interaction. We add specific extensions for augmented re-
ality, in particular abstractions forTracking, aWorld Model,
andContext. The similarity of our structure and the MVC
pattern is not surprising, as AR systems are interactive sys-
tems by definition [1].

PATTERNS FOR AUGMENTED REALITY SYSTEMS
On a subsystem level, the developers of existing augmented
reality systems use differentapproachesto implement the
subsystems, e.g. tracking or presentation. An analysis of ex-
isting systems reveals that several approaches recur in vari-
ous existing systems—sometimes explicitly, such as when
two systems use a common library, and sometimes im-
plicitly, when different developers apply the same basic
techniques. The selection depends on the systems’ non-
functional requirements and the design goals.

Successfully applied approaches can be extracted from the
descriptions of existing systems and then be described as
abstract reusablepatternsfor augmented reality systems de-
sign. This is heavily based on the idea of design patterns
in software architectures. Patterns are structured descrip-
tions of successfully applied problem-solving knowledge:
A software architectural pattern describes a specific design
problem, which appears in a particular design context, and
presents a generic solution scheme. The solution scheme
specifies the involved components, their responsibilities, re-
lationships and the way they cooperate[2, pp 8].

In a first step, we have collected patterns from existing sys-
tems. We are currently in the process of ordering this list
into asystem of patterns, as discussed below.

2



A Scheme for the Description of Patterns
We describe each pattern by name, goal, motivation, a
description, usability, consequences, collaborations, and
known use. This follows the scheme of describing archi-
tectural or design patterns, e.g. as used by Gamma et al. [7].

Name The name of a pattern should be descriptive and in
the best case in use in several systems.

Goal The goal is a short description for the target use of the
pattern.

Motivation This section describes why the pattern was de-
veloped.

Description We describe each pattern informally by its
tasks and structure. We do not yet have formalisms such
as UML static and dynamic diagrams for each pattern.

Usability Describes when and how each pattern can or can-
not be used.

ConsequencesThe advantages and disadvantages of the
pattern.

Collaborations Other patterns that can or must be used in
combination to this pattern.

Known use Projects and systems that use the pattern.

As examples we describe the patternsScene Graph Node
andScriptingfor the Application subsystem, and theScene
Graphpattern for the Presentation subsystem.

Scene Graph Node pattern (application subsystem)
Goal: Embed application in world model.

Motivation: In augmented reality, user interaction is con-
nected with the physical environment. Consequently ap-
plications are often linked to places in the real world. With
this pattern, the application is seamlessly embedded in the
environment.

Description: A scene graph models the world around a user
as a tree of nodes. Each node can be of any type, usually
graphical objects such as spheres. But there are also non-
graphical objects that include control code.

Usability: In combination with the Scene Graph pattern for
rendering.

Consequences:The scene graph-based approach for an ap-
plication hands the control flow to the underlying scene
graph platform, e.g. Open Inventor. Some scene graph
platforms allow shared scene graphs, enabling application
sharing among several users.

Collaboration: Uses scene descriptions in scene graph for-
mat, may be implemented with in a scripting language,
may be implemented as event call-back.

Known use: Studierstube [15], Tinmith [11]

Scripting pattern (application subsystem)
Goal: Quickly develop new applications.

Motivation: The real-time constraints of a user application
are often not very strong, so that it is possible to quickly
develop new applications in a scripting language sup-
ported by a powerful environment.

Description: For the development of an application, there
is a scripting wrapper around all components that have
performance constraints. These components are written
in compiled languages such as C++ and offer scripting
interfaces.

Usability: The development of scripted applications allows
rapid prototyping but demands powerful components that
implement important functionality. The disadvantage is
that the scripting approach is not suited for very complex
applications.

Consequences:A script interpreter is needed, as well as
(possibly) a special scripting language for AR.

Collaboration: Can implement the Scene Graph Node pat-
tern.

Known use: ImageTclAR [10], Karma [5], Coterie [9],
MARS [4], EMMIE [3]

Scene Graph pattern (presentation subsystem)
Goal: Use a rendering component that allows more com-

plex and dynamic scenes.

Motivation: For the representation of 3D environments,
scene graphs have shown to be a reasonable choice.
The level of abstraction is higher than for OpenGL, but
they are much more powerful and flexible than VRML
browsers with a limited application programming inter-
face. Most scene graph components can read VRML de-
scriptions of scenes.

Description: Examples are (Open) Inventor, OpenSG,
Open Scene Graph.

Usability: Use a scene graph if you don’t need the flexibil-
ity and low-level graphics access that OpenGL provides
but want to render more complex scenes and need more
dynamic access that a VRML browser offers.

Consequences:Can restrict the possibilities for modeling
the application.

Known use: ARVIKA [6], Studierstube [15]

Collaboration: Scene Graph Node pattern for the applica-
tion.

A Catalogue of Patterns
We classify the patterns into six problem categories which
correspond to the six subsystems. Here we follow Busch-
mann’s [2, pp 362] approach to specify categories that sup-
port the search process of developers and use the subsystem
decomposition as the base for the problem categories.

3



Augmented Reality Patterns
Application Central Control

Scripting
Scene Graph Node
Tracking-Rendering-Loop
Web Service
Multimedia Flow Description

Interaction Handle in Application
Use Browser Input Functions
Networked Input Devices
Modality Fusion
DoF Adaption
Operating System Resources

Presentation 3D Markup
Low-level Graphics Primitives
Scene Graph
Video Transfer
Multiple Viewers
Proprietary Scene Graph
2D/3D Mapping
UI Interpreter
Filtering
View Manager
Remote Rendering
Error Adaptation

Tracking Inside-out Tracking
Outside-in Tracking
Tracking Server
Networked Trackers
Direct Access
Black-box Fusion
Tracker-Filter-Pipeline
Interdependent Trackers

World model Example Class
Scene Graph Stream
Object Stream
Marker File
Dynamic Model Loading

Context Blackboard
Repository
Publisher/Subscriber
Context Pull

Table 1. A collection of augmented reality patterns.

Table 1 gives an overview of the identified patterns classified
by subsystems.

We cannot describe each of the identified patterns in detail
here. Instead, we restrict ourselves to listing them here with
a short description.

Central Control pattern (application)
Write the application in a high-level programming lan-
guage, explicitly describing what happens when.

Tracking-Rendering-Loop pattern (application)
To simplify the development of AR applications, some li-
braries provide the needed low-level functionality to up-
date the user’s view regularly. The application’s task is to
provide hooks that can be called within the update loop
and can modify the scene to be presented.

Web Service pattern (application)
The control flow is situated on a web server and imple-
mented within a web service. This web service is pub-
lished under a particular web address and the answer of
the service is rendered on a web client. If the answer
contains Augmented Reality content then an AR viewing
component is activated to display the given AR content.

Multimedia Flow Description pattern (application)
A high-level markup language provides domain specific
components and concepts that help create new content
quickly. For example, to support a training scenario for
unskilled workers, the AR system should visualize a se-
quence of AR scenes and other documents. To describe
such a scenario, the content creator has to combine work-
flow steps and add content to each step. An execution en-
gine for workflows reads such a description and controls
the presentation of the current working step.

Handle in Application pattern (interaction)
Include input handling code in the application code, with
explicit references to the types of input devices.

Use Browser Input Functions pattern (interaction)
VRML Browsers can send out events through the EAI in-
terface when the user clicks on on-screen objects with the
mouse or when the gaze direction coincides with certain
objects. Other browsers provide similar functionality.

Networked Input Devices pattern
Provide an abstraction layer for input devices and a de-
scription of how the user input can be combined; interpret
this description using a controller component. Use mid-
dleware to find new input devices dynamically.

Modality Fusion pattern (interaction)
Individual input modalities such as gesture and voice are
combined to fire one single control event.

DoF Adaption pattern (interaction)
The degrees of freedom in an input modality are mapped
upon the degrees of freedom of the application’s expected
input.

4



3D Markup pattern (presentation)
Use a viewer for high-level graphics description lan-
guages such as VRML to display 3D information. Use an
API such as the External Authoring Interface (EAI) that
is part of the VRML standard to modify the scene and set
the viewpoint based on tracking data.

Low-level Graphics Primitives pattern (presentation)
Libraries for 3D graphics such as OpenGL provide com-
ponents for rendering of low-level 3D constructs. The ap-
plication developer creates new objects and tells the ren-
der to display them. With the information from the track-
ers, the scene can be rendered with the correct viewing
direction and distance.

Proprietary Scene Graph pattern (presentation)
Use an own scene graph for graphics rendering on top
of a graphics library such as OpenGL combined with an
own concept for object access through an own addressing
schema. Each node of the scene graph has the same abil-
ities to serialize and address them as the other objects in
the system.

Video Transfer pattern (presentation)
A thin client gathers videos through one or two head-
mounted cameras, encodes them (e.g. MPEG 2), com-
presses them, and transfers them to a server. The server
uncompresses the video images, processes them (calcu-
lates the camera position and orientation), augments, en-
codes and compresses the images. The images are sent to
the client, decompressed and shown on the head-mounted
display.

Multiple Viewers pattern (presentation)
Provide an abstraction layer for different types of viewers
(AR, speech, text etc.) that can handle certain document
types. Then provide the viewers with the appropriate doc-
uments.

2D/3D Mapping pattern (presentation)
Map output windows of 2D desktop applications onto out-
put windows in a 3D environment. This allows the inte-
gration of legacy 2D applications in a spatially registered
environment.

UI Interpreter (presentation)
Use an abstract description language for the specification
of the user interface and render it with an interpreter.

Filter (presentation)
Reduce the complexity of the user interface by suppress-
ing output requests of individual applications.

View Manager (presentation)
Control the user interface with a central manager compo-
nent that filters or queues output requests.

Remote Rendering (presentation)
Use a remote rendering server to offload computationally
intensive tasks such as rendering complex models from a
CAD database.

Adaptation to Error Level (presentation)
Adapt the presentation to the level of error from other sub-
systems, in particular tracking. For example, if the track-
ing inaccuracy exceeds a certain threshold then switch
from a 3D to a 2D presentation.

Inside-out Tracking pattern (tracking)
Inside-out tracking is a technique where a tracking system
on the user side tracks the position and orientation. Exam-
ple is optical tracking by a camera mounted on the user’s
head that tracks markers in the environment.

Outside-in Tracking pattern (tracking)
Tracking devices in the user’s environment track the user
from outside and send the information to the user system.

Tracking Server pattern (tracking)
A tracking server in the user’s environment performs re-
source intensive computations and returns the results to
the client.

Networked Trackers pattern (tracking)
For each tracking device, provide a wrapper that uses
middleware concepts such as CORBA. The wrapper pro-
vides an interface to the tracker and registers itself in
the network. Components that need a tracker (consumer)
look for them through middleware services and connect
to them. The components search for the trackers by name,
not by address. Once connected, the tracker and the con-
sumer communicate transparently.

Direct Access pattern (tracking)
The tracking devices are accessed through drivers for the
operating system.

Black-box Fusion pattern (tracking)
Use a tracking fusion component that uses a fixed set of
simple trackers as input and provides improved tracking
data as output.

Tracker-Filter Pipeline pattern (tracking)
An application of the general pipes-and-filter pattern.
Connect several trackers and or filters to a pipeline that
sequentially processes the input of a tracking sensor.

Interdependent Trackers pattern (tracking)
Use a combination of trackers to process the input. The
trackers are mutually connected and use the input from
other trackers to modify their own output.

Example Class pattern (world model)
The developer creates a class with the constructs for a ge-
ometric body. An example is OpenGL code that calls the
OpenGL rendering engine to display it. For correct reg-
istration with the user’s pose, the position and angle of
the virtual camera that looks at the scene can be changed.
This is usually done in rendering-tracking-update loop.

Scene Graph Stream pattern (world model)
With an authoring tool a content developer creates the
model of a virtual scene. In an industrial context, scenes
created with CAD tools can be simplified and reused. The
scene description is saved in the file system and given
the AR system for processing. Scene graphs are usually
stored on the file system.

5



Object Stream pattern (world model)
The runtime environment allows serialization of objects to
disk. The next time the application is started the objects
are recreated by deserializing them. Recursively, a whole
scene graph can be loaded from disk.

Marker File pattern (world model)
At system startup or any time the system comes into a new
environment, the trackers have to know what to look for
and how to interpret it. The tracking component reads a
file that describes the markers or any natural features it
has to look for.

Dynamic Model Loading pattern (world model)
Instead of loading a particular scene from a file, the sys-
tem has access to a database system. This system contains
information about the environment, e.g. in a geographical
schema. Part of the information are graphical informa-
tion and marker information. The system queries for the
graphical information that belongs to a discrete database
object and passes it on to the rendering component. The
same is true for marker information (to the tracking com-
ponent) and real world objects (e.g. for occlusion).

Blackboard pattern (context)
Information producers write information to the Black-
board, a central component. Information consumers read
data from the Blackboard, process them and may write
new, higher abstract information to the Blackboard.

Repository pattern (context)
Components that produce context information write to the
repository. Components that are interested into context
information read from the repository. The repository uses
an addressing schema to manage the information. Each
kind of data is written and read by providing its address.

Publisher/Subscriber pattern (context)
Context providers connect as publishers to a central mes-
saging service, context consumers as subscribers. The
context providers write the new context information to
a particular channel which distributes it to the connected
subscribers.

Context Pull pattern (context)
An interested component directly queries the context pro-
ducer component or it registers itself as subscriber. The
subscriber list is managed by each component privately.

A SYSTEM OF PATTERNS
One of the goals of software patterns is to provide a com-
mon vocabulary for system designers to discuss and com-
pare the different approaches they use. Similar to words in a
vocabulary, patterns do not exist in isolation; there are inter-
dependencies among them. Patterns can be integrated into a
system of patterns:“A system of patterns for software archi-
tecture is a collection of patterns for software architecture,
combined with rules for their implementation, combination,
and practical application for software development.”[2, pp
360] Buschmann et al. [2] formulate several requirements
on a system of patterns: it must contain a sufficient number
of patterns, each pattern should be described consistently,

the pattern system should show the relationship between pat-
terns, the patterns should be ordered adequately, the pattern
system should support the construction of new systems, and
support its own evolution. We support these requirements by
the catalogue of patters and the schema for the descriptions
of individual patterns.

To give an overview of the relationships between the indi-
vidual patterns we use a directed graph. Each pattern is part
of this graph along with labelled arrows indicating direction
and type of the relationships. Figure 2 shows the identified
patterns and their relationships. This illustration is similar to
the one used in Gamma et al. [7]. To support the locating of
patterns we show the associated subsystems.

The list of patterns can be separated into two types of pat-
terns: First, patterns that are specific to augmented reality
and describe good practices for the design of augmented re-
ality systems. Second, general patterns that we found in
several existing augmented reality systems with modifica-
tions for AR. These patterns complete the pattern system for
a high-level description of augmented reality systems. So
although a pattern might already be well known as a gen-
eral pattern for system design, for example the Blackboard
pattern, we present its application in the augmented reality
context.

RESEARCH ISSUES
We have identified nearly fifty patterns for augmented reality
systems. However, there are several open issues left.

A system of patterns for subsystems is a practical way to dis-
cuss the software architectures of existing applications and
prototypes. It provides a common vocabulary of well-known
approaches for developers in the augmented reality domain.
Of course, this requires an agreement among the developers
on the chosen names for the patterns. With this work we
present the names we chose for the identified patterns as a
first proposal.

Patterns can appear on different abstraction levels. In this
work, we have only considered architectural patterns. In
several subsystems such as tracking, it would be worthwhile
to establish more technical or algorithmic patterns for com-
plex tasks such as sensor fusion. But these are on a differ-
ent abstraction level. We could extend our current system
of patterns to support more abstraction levels with technical
patterns as sub nodes of architectural patterns.

The current scheme for the description of individual patterns
lacks a description of their structure. We consider this as an
important step for the usability of a system of patterns.

Also, existing virtual reality systems can provide a rich
source for additional patterns that can be applied not only
to VR, but to AR as well.

We hope that a lively discussion of patterns for augmented
reality systems will benefit the AR research community and
encourage collaboration between different research groups.

6



Presentation

Central 
Control

Scripting

Scene 
Graph Node

Tracking-
Rendering-

Loop

Webservice

Multimedia  Flow 
Description

Operating 
System 

Resources

User 
Browser 

Input 
Functions

Networked 
Input 

Devices

Direct 
Access

Tracking 
Manager

Networked 
Trackers

Example 
Class

SceneGraph 
Stream

Object 
Stream

Dynamic 
Model Loading

Blackboard
Repository

Publisher 
Subscriber

Context Pull

3D Markup

Scene 
Graph

Proprietary 
Scene Graph

Video 
Transfer

Multiple 
Viewers

can use

can use

uses

implemented by

has

backend

saved as

has uses

hardcoded class

uses

part of

implemented by

uses rendering server

Low level 
Graphics 
Primitives

uses

uses

subscribes to
devices

reads context device

coordinates

reads tracking data

Modality 
Fusion

coordinates

subscribes to

shows rendered
 image

uses

coordinates accesses

implemented by

Marker File

hardcoded
configuration hardcoded

configuraton

subscribes

subscribes

provides input

Context

Interaction

Tracking

Application World Model

contributes to

Inside-out 
Tracking

Outside-in 
Tracking

Tracking 
Server

Black-box 
Fusion

Tracker-
Filter 

Pipeline

Inter- 
dependent 
Trackers

Handle in 
Application

DoF 
Adaptation

2D/3D 
Mapping

UI Interpreter

Filtering

View 
Manager

Remote 
Rendering Error 

Adaptation

uses

adaptes

updates

includes
includes

consists of

realizes

part of

used by

uses

controls

uses

uses

Figure 2: Relationships between the individual patterns for augmented reality systems. Several approaches are used in
combination within an augmented reality system. One approach might require the use of another approach or prevent
its usage.

7



Acknowledgments
This work was supported by the High-Tech-Offensive
Zukunft Bayern of the Bavarian Government, and the com-
pound project Forsoft 2 within the Softnet subproject sup-
ported by the Bavarian research foundation.

REFERENCES
1. R. T. AZUMA , A Survey of Augmented Reality, Presence, 6 (1997),

pp. 355–385.
2. F. BUSCHMANN, R. MEUNIER, H. ROHNERT, P. SOMMERLAD ,

AND M. STAL , Pattern-Oriented Software Architecture. A System of
Patterns, John-Wiley & Sons, 1996.

3. A. BUTZ, T. HÖLLERER, S. FEINER, B. MACINTYRE, AND

C. BESHERS, Enveloping Users and Computers in a Collaborative
3D Augmented Reality, in Proceedings of IWAR ’99 (Int. Workshop
on Augmented Reality), San Francisco, CA, USA, pp. 35–44.

4. S. FEINER, B. MACINTYRE, T. HÖLLER, AND T. WEBSTER, A
touring machine: Prototyping 3D mobile augmented reality systems
for exploring the urban environment, in Proc. ISWC ’97 (First Int.
Symp. on Wearable Computers), Cambridge, MA, USA.

5. S. FEINER, B. MACINTYRE, AND D. SELIGMANN ,
Knowledge-based augmented reality, Communications of the ACM,
36 (1993), pp. 52–62.

6. W. FRIEDRICH AND W. WOHLGEMUTH, ARVIKA - Augmented
Reality for Development, Production and Service, in The
International Workshop on Potential Industrial Applications of Mixed
and Augmented Reality, Tokyo, Japan.

7. E. GAMMA , R. HELM , R. JOHNSON, AND J. VLISSIDES, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

8. G. E. KRASNER AND S. T. POPE, A Description of the
Model-View-Controller User Interface Paradigm in the Smalltalk-80

System, tech. rep., ParcPlace Systems, Inc., Mountain View, USA,
1988.

9. B. MACINTYRE AND S. FEINER, Language-level support for
exploratory programming of distributed virtual environments, in
Proc. UIST ’96 (ACM Symp. on User Interface Software and
Technology), Seattle, WA, USA, pp. 83–95.

10. C. OWEN, A. TANG, AND F. XIAO, ImageTclAR: A Blended Script
and Compiled Code Development Systems for Augmented Reality, in
International Workshop on Software Technology for Augmented
Reality Systems (STARS 2003), Tokyo, Japan.

11. W. PIEKARSKI AND B. THOMAS, An Object Oriented Software
Architecture for 3D Mixed Reality Applications, in Proceedings of the
International Symposium on Mixed and Augmented Reality.

12. T. REICHER AND A. M ACWILLIAMS , Study on Software
Architectures for Augmented Reality Systems, report for the ARVIKA
consortium, tech. rep., Technische Universität München, 2002.

13. T. REICHER, A. MACWILLIAMS , AND B. BRUEGGE, Towards a
System of Patterns for Augmented Reality Systems, in International
Workshop on Software Technology for Augmented Reality Systems
(STARS 2003),http:
//wwwbruegge.in.tum.de/cgi-bin/pub/info.pl?
publications/includes/pub/reicher2003patterns .

14. T. REICHER, A. MACWILLIAMS , B. BRUEGGE, AND G. KLINKER,
Results of a Study on Software Architectures for Augmented Reality
Systems, in Poster Session of IEEE and ACM International
Symposium on Mixed and Augmented Reality ISMAR 2003, Tokyo,
Japan.

15. D. SCHMALSTIEG AND G. HESINA, Distributed Applications for
Collaborative Augmented Reality, IEEE Virtual Reality, (2002).

16. D. C. SCHMIDT, M. STAL , H. ROHNERT, AND F. BUSCHMANN,
Pattern-Oriented Software Architecture, Vol. 2: Patterns for
Concurrent and Networked Objects, Wiley, New York, NY, 2000.

8

http://wwwbruegge.in.tum.de/cgi-bin/pub/info.pl?publications/includes/pub/reicher2003patterns
http://wwwbruegge.in.tum.de/cgi-bin/pub/info.pl?publications/includes/pub/reicher2003patterns
http://wwwbruegge.in.tum.de/cgi-bin/pub/info.pl?publications/includes/pub/reicher2003patterns

	Introduction
	An Augmented Reality Reference Model
	Patterns for Augmented Reality Systems
	A Scheme for the Description of Patterns
	A Catalogue of Patterns

	A System of Patterns
	Research Issues
	REFERENCES 

