
Results of a Study on Software Architectures
for Augmentd Reality Systems

This work was supported by the German Federal Ministry for Education and Research (BMBF) in the ARVIKA project. We are obliged to the ARVIKA
members for support of this study. We would like to thank all AR researchers who filled out our questionnaire, providing the all-important raw data for our

evaluation; and the members of the Software Engineering Institute, who provided helpful insights into our architecture evaluation methods.

DWARF
Distributed Wearable Augmented Reality Framework

www.augmentedreality.de

Thomas Reicher, Asa MacWilliams, Bernd Bruegge, Gudrun Klinker
Chair for Applied Software Engineering

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, Garching bei München, Germany

(reicher,macwilli,bruegge,klinker)@in.tum.de

Introduction
Most existing Augmented Reality (AR) systems focus on a
particular subsystem, such as position tracking or human-
computer interaction. Only a few take a comprehensive
approach with AR as part of an enterprise-wide system. An
overview of this study is presented here; the full version is
available from the authors upon request.
For the ARVIKA consortium, we conducted a study on AR
soft-ware architectures, analyzing ARVIKA, AIBAS, AR-PDA,
Aura, ARToolkit, ArcheoGuide, BARS, the Boeing wire
bundle assembly prototype, DWARF, EMMIE, ImageTclAR,
MARS, MR Platform, prototypes by Siemens Corporate
Research, STAR, Studierstube, Tinmith, and UbiCom. In
order to facilitate comparison of AR software architec-tures
described in different notations, we extracted a refe-rence
architecture and standard terms for software com-ponents
typically found in AR systems. We can, to some extent, map
existing architectures onto it.

Augmented Reality Reference Architecture
We identified six subsystems common to most AR

architectures:
Application, containing application-specific logic and

content, and access to legacy systems and databases;
Tracking, responsible for determining the users’ and other

objects’ pose;
Interaction, which gathers and processes user input;
Presentation, which uses 3D and other output modalities;
Context, which collects different types of con-text data and

makes it available to other subsystems; and
World Model, which stores and provides information about

real and virtual objects around the user.

Software Patterns for Augmented Reality
Based on the reference model, we identified several commonly used patterns for implementing
them. We see this as a first step towards the development of a pattern language for AR systems in
the sense of the design pattens of Gamma et al. We cataloged the approaches, providing goal,
motivation, description, usability, consequences and known use for each. This allows developers to
consider the impact of design decisions on the system’s quality attribtues. The figure above shows
the relationships between the approaches we have identified.
The identified pattern set is not yet complete.
We invite you to add your own patterns!

Exemplary Pattern Description
Name: Scene Graph Node (Application)
Goal: Embed application in scene graph.
Motivation: In AR, user interaction is connected with the physical environment. With this approach, the
application is seamlessly embedded in the environment.
Description: A scene graph models the world around a user as a tree of nodes. Each node can be any type
object, usually graphical ones. But there are also nongraphical objects that include control code.
Usability: In combination with a scene graph-based renderer.
Consequences: The Scene Graph Node pattern handles the control flow to the underlying scene graph
platform. This offers an easy way for the implementation of shared applications for locally nearby users. The 3D
interface can be shared among several users but displayed for each from a different view.
Known use: Studierstube, Tinmith, MARS

