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Abstract

In this paper, we propose a new approach to building
augmented reality (AR) systems using a component-based
software framework.

This has advantages for all parties involved with AR sys-
tems. A project manager can reuse existing components in
new applications; an end user can reconfigure his system by
plugging modules together; an application developer can
view the system at a high level of abstraction; and a com-
ponent developer can focus on technical problems.

Our proposed framework consists of reusable distributed
services for key subproblems of AR, the middleware to com-
bine them, and an extensible software architecture. We
have implemented services for tracking, modeling real and
virtual objects, modeling structured navigation or mainte-
nance instructions, and multimodal user interfaces.

As a working proof of our concept, we have built an in-
door and outdoor campus navigation system using different
modes of tracking and user interaction.

1. Introduction

In this paper, we propose a new, framework-based ap-
proach to building augmented reality (AR) systems. We
present the design of a flexible and modular software frame-
work that allows components to be reused between applica-
tions, and describe a prototype system as a working proof
of our development approach.

For AR in task-centered, well-structured activities such
as aircraft maintenance, one traditionally chooses a dif-
ferent software architecture than one for AR in a ubiqui-
tous computing environment. Indeed, the architectures of
current AR systems [2, 3] are widely different. Each of
these often monolithic and highly specialized systems uses

a small demonstration setup to develop technology for a par-
ticular task such as tracking, calibration or human-computer
interaction. Even though these tasks are essentially the
same in other systems as well, reusing the technology in
different architectures is quite difficult.

This notion of similar tasks is quite general. Trackers,
for example, provide position and/or orientation informa-
tion for a set of moving points with a certain speed and
accuracy. The user’s (virtual or real) environment can be
represented in geometric and photometric models approxi-
mating the position, shape and appearance of real objects.

After identifying these and other common parts of AR
applications assoftware components, we propose to build
a software frameworkthat can be used for a variety of dif-
ferent AR applications. We think that such a component-
based framework can serve as a useful foundation for both
research-oriented and real-world AR systems.

An AR system built with our framework consists of a set
of services. Each service is a program that can potentially
run on a separate hardware component with its own proces-
sor, memory, I/O devices and network connections. Differ-
ent services connect dynamically to each other by revealing
their needs and abilities on the network.

We present and examine our concept from four differ-
ent points of view. We describe the framework from the
standpoint of a project manager, the AR system’s user, the
AR application developer and the developer of individual
technical components, and show how these groups’ require-
ments can be satisfied with our concepts.

2. Related work

The primary goal of our framework is to develop a re-
search platform for AR on wearable computers and in intel-
ligent environments. Besides this research focus, the project
aims to bring well-established parts of AR technology into



practical use within a short time frame. This idea was pro-
posed last year by Dave Mizell [17].

Although concepts from the field of software engineer-
ing have been available, they are not yet widely used in the
AR community. TheStudierstubeproject at Vienna Univer-
sity of Technology is one of the research outfits that have
been looking at software architectures more closely [24].
However, the architecture can so far be seen only partially
as a framework. Reusability is mainly for testing new user
interface paradigms [23] and configuration of the tracking
subsystem [19]. In contrast, our approach modularizes en-
tire AR systems as a set of services which connect dynami-
cally at runtime.

Columbia University’s Computer Graphics and User In-
terface Lab has also been involved in assembling different
types of AR applications [7] from a common basis (‘Co-
terie’ [14, 15]). This approach is mainly based on provid-
ing a common and easy-to-use distributed graphics library
rather than a framework of reusable AR components that
can be configured on the fly.

Currently, a lot of the research effort in AR is going into
developing and combining tracking technology. As such,
it is not surprising that the most popular piece of reusable
code, theARToolKit[10], is aimed at tracking. This, how-
ever, is not a framework, but a software library. The same
statement also applies to other graphics-related distributed
research efforts, such as architectures of virtual reality caves
or other virtual reality software libraries.

The philosophy and design of our framework is based on
the concept of “AR-ready” intelligent buildings proposed by
Klinker et al. [12].

3. Views of a component-based framework

This section examines the requirements for AR systems
from several perspectives and proposes component-based
solutions. The idea of different views of a system has been
used, for example, for the description of distributed systems
in the ISO standardODP (Open Distributed Processing)[9].

3.1. The project manager’s view:
reuseable components

The manager of an AR project wants to get the job done.
This means keeping down development cost and deliver-
ing on time. Let us now examine how a component-based
framework can help the project manager reach these goals.

The components of the framework can be seen as black
boxes that perform their specific tasks, interacting with the
other components using well-defined interfaces. Once these
interfaces have been specified, development can be dis-
tributed in time and space, and only after all components

have been completed, interaction between the various de-
velopment teams becomes necessary.

Components that are frequently needed in AR have to be
kept general enough to allow easy incorporation into spe-
cific applications. These multi-purpose components, de-
scribed in Section4, form the core of our framework. They
can be configured, for example, usingXML files. Thus, the
project manager can use different specialists for different
tasks, such as cognitive psychologists and computer scien-
tists for specifying and implementing user interfaces.

To be able to develop effective components, we chose a
two-track approach for the design of the framework and of
applications [20]. Each new application uses components
of the framework. When the new system is completed,
a thorough analysis ensures that lessons learned from the
application are integrated into the framework. This could
mean generalizing a special application component to a
multi-purpose framework component or extending an exist-
ing framework component’s functionality. The framework
will thus grow over time, leading to more powerful applica-
tions.

Another advantage of the framework is beyond the usual
project-centered view. With a powerful framework that can
be configured easily, new ideas in AR can be tested with
very little effort. This kind of “rapid prototyping” is emi-
nently useful for finding new applications for AR.

3.2. The user’s view: pluggable modules

AR systems can be roughly separated into two classes:
systems with high-precision tracking and high-end graph-
ics in a controlled environment, and mobile, autonomous
systems with limited processing power in a changing envi-
ronment.

A controlled environment might be an operating room
in a hospital, a television studio, or a research laboratory
for the verification of crash test simulations [5]. High-end
systems need a lot of computation power for tracking and
rendering and often use a compute server (as in [22]). These
systems have a lot in common with virtual reality systems.
If wearable computers are used, there is no application logic
on them—they are only used as multimedia terminals.

For the second class, the mobile, autonomous systems
with the focus on the right information at the right place
and the right time [6, 11], the wearable computers have to
provide the entire functionality (as in [8]). The computation
power of these systems is limited and only few percent of
that of the high-end systems. Some systems cooperate with
compute servers over a network for rendering and tracking,
but most of them are standalone.

Let us focus first on these autonomous systems. From the
user’s perspective, a wearable AR system consists of a set
of functional units: tracking the user’s position and direc-
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Figure 1. Hardware is separated from software

tion of view, rendering virtual objects, and the application
itself. Usually there are additional units for speech recog-
nition and synthesis, gesture recognition, and more. These
units consist of hardware devices connected to the wear-
able computer and the associated software. Figure1 illus-
trates this. For optical tracking, one or more video cameras
and the tracking software are needed. The video cameras
are connected to an I/O port of the wearable computer, and
the camera driver and tracker software are installed on the
wearable. The installation of the tracking software and the
camera driver is too complicated for many end users, and
requires a system administrator or system integrator. This
approach is quite inflexible from the end users’ perspective,
since they cannot change the system configuration them-
selves.
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Figure 2. Modules combining software and hardware,
communicating over the network

We believe that this inflexibility for the user is a conse-
quence of the separation of functionality and hardware. For
the user, the camera and the tracking software are seen as a
unit and belong together. Therefore, we propose to bundle
them into a trackingmodule, a hardware/software unit sep-
arated from the other parts of the system. The cooperation
between the other parts and the module uses a communica-
tion network, as shown in Figure2.

With this approach, the user has a set of tools that can be
combined simply by plugging hardware modules together.
We think that it is easier to understand how to use things if
you can touch them. Therefore, the complete functionality

of each tool should be encapsulated in a hardware box that
can be be connected when needed.

We can apply the same concept of modularization to the
class of high-end systems, as well: external trackers and
computation servers are simply larger, non-wearable mod-
ules. This enables a distributed tracking concept as de-
scribed in [12] and allows us to bridge the gap between
high-end and mobile AR systems.

3.3. The application developer’s view:
layered services

Application
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Figure 3. The application developer’s view of the sys-
tem (application shown in gray)

The application developer is responsible for the design
and implementation of an AR system. Just as for the project
manager, the framework helps him minimize development
time and effort. However, the application developer also has
to deal with implementation aspects.

For the application developer, the AR system has a three-
layered architecture (Figure3). The base layer consists of
low-level services such as trackers, display devices or data-
bases. These are completely encapsulated from the appli-
cation by the second layer, the high-level framework ser-
vices. These services provide general functionality needed
by most AR systems. Examples are auser interface engine
that allows the creation and control of user interfaces on
different hardware devices, ataskflow enginethat models
task-centered activities as finite state machines and atrack-
ing managerthat combines tracking information from a va-
riety of trackers. The main services that are currently pro-
vided by our framework are described in Section4.2. The
application itself is the third layer of the system.

Creating a new AR system involves selecting appropriate
framework components (white in Figure3) and writing the
application (shaded gray).

The first step is to choose the high-level services from
the framework that can best support the application’s logic.
For a maintenance system, for instance, we would use the
taskflow engine to model the sequence of repair steps.



Second, we choose appropriate low-level services to sup-
port the higher ones. We could, for example, use two track-
ers: aGPS tracker for outdoor use and a high-precision in-
door optical tracker.

Third, we can model the application logic using the ab-
stractions offered by the high-level services, such as task-
flows or user interface descriptions. The application devel-
oper does not have to worry about specific implementation
details of, say, a taskflow representation, but can concen-
trate on the taskflow itself.

In real applications, there is always some functionality
that cannot be fulfilled by the given framework components.
To add this extra functionality, as a fourth step, the applica-
tion developer writes new framework-compatible services,
which include “glue logic” to initialize and coordinate the
other components of the system.

As a fifth and last step, we can deploy and configure the
framework services and the application on the target hard-
ware. Many services are configured automatically using the
middleware described in the next section. Others can be
configured usingXML files.

With this approach, application developers can view the
entire system at a high level of abstraction and concentrate
on modeling application logic. They do not need to worry
about the services’ implementation, or even about the fact
that they are using a distributed system.

3.4. The module developer’s view:
needs and abilities

A module in the framework is a combination of hardware
and software which provides a certain functionality to the
user or to other modules in the system. Any necessary ex-
ternal devices like a camera or aGPSreceiver are connected
to the module. The module’s software consists ofservices,
which provide its core functionality; the drivers for external
devices; and theservice manager, a middleware component
providing the communication with other modules in the sys-
tem (Figure4).

The service manager is identical on every module, even
across hardware platform boundaries. Thus, the module de-
veloper has to concentrate only on problem-specific issues
when writing the modules’ services.

The service manager automatically connects matching
services together, e.g. a tracker and aVRML display service.
For this, services have severalneedsand severalabilities.
The abilities can be used by other services if and only if
all needs of the service can be fulfilled by other services.
Each need and ability has a specifictype, and abilities can
be fulfilled only by needs of the same type (see Figure5).

At startup time of the module, each service describes
its needs and abilities to the local service manager. The
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Device

ModuleCore

:Service :Service

ServiceManager

Figure 4. Software view of a module

different local service managers communicate over the net-
work and distribute the information about the services with
their needs and abilities. The service managers attempt to
match the services’ abilities and needs, taking quality-of-
service information into account. Thus, tradeoffs in AR
systems [13] can be adjusted dynamically.

When all needs of a service can be fulfilled by abilities
of other services, dynamic connections are established be-
tween the corresponding needs and abilities. To connect the
services of two different modules, no user interaction be-
sides plugging the hardware together is necessary.

ModuleCore

:Service

:Need

:Type

ModuleCore

:Service
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Figure 5. Connection between needs and abilities

Let us consider, for example, developing an optical track-
ing module. We need to implement the actual tracking and
camera access code as a service. Basically, this constitutes
95% of the work. After this has been finished, we may end
up with a continuing series of six-dimensional positions that
are needed by the display module to render the images cor-
rectly. All we need to do now is to describe the service’s
needs and abilities to the module’s service manager. This
could be done using a configuration file as in Figure6.

Once the needs can be fulfilled, the service manager ar-
ranges for communication between the services. A connec-
tion for communication between two services is set up by
two connectors, which are created by the two modules’ ser-
vice managers. These connectors configure the necessary
communication resources such as event channels or shared
memory blocks. The services can access the communica-
tion resources through the connectors and use them to com-



<module>
<service name="OpticalTracker">

<need name="world"
type="WorldModel"
minInstances="1" maxInstances="1">

<connector protocol="CorbaObjExport"
type="CorbaObjImporter"/>

</need>
<ability name="position"

type="PositionData"
attributes="accuracy=10,lag=30,

trackedThing=/User/Head">
<connector protocol="NotifyStructuredPushSupply"

type="NotifyStructuredPushSupplier"/>
</ability>
<ability name="image"

type="VideoData"
attributes="resX=320,resY=240,fps=30">

<connector protocol="SharedMemory"
type="SharedMemoryWriter"/>

<connector protocol="udp"
type="udpSender"/>

</ability>
</service>

</module>

Figure 6. Example description of the optical tracker in
XML format

municate with one another. Once the connection is set up,
the service manager is not involved in the actual commu-
nication, although it can break connections or dynamically
reconnect to other services.

Since the services specify their needs by type and by
their preferred communication protocol, the service man-
agers collectively act as a publish-and-subscribe mechanism
for events or object references. Services wishing to receive
position data from other services will receive it, using an
appropriate communication protocol such asCORBA events
or shared memory.

The advantage of this approach is that the communica-
tion partners and communication mechanisms are selected
before the services actually start communicating. There is
no communication overhead at application runtime.

4. The DWARF framework

Our concepts of a component-based framework for aug-
mented reality systems were first tested within theDWARF

(Distributed Wearable Augmented Reality Framework)pro-
ject. DWARF [1] is an ongoing research project which
started in the beginning of 2000 and has meanwhile resulted
in the first prototype system.

4.1. Framework architecture

The framework we propose has three basic aspects: ser-
vices, middleware and architecture. First,DWARF consists
of software services such as trackers, running on hardware
modules. Each service provides certain abilities to the user

or to other services. Second,DWARF contains the middle-
ware necessary to match these services dynamically and set
up the communication between them, so that the system
configuration can change at runtime. Third, the conceptual
architecture ofDWARF describes the basic structure of AR
systems that can be built with it. This ensures that service
developers agree on the roles of their own services within
the system and on interfaces between them. The architec-
ture is also easy enough for end users to understand, so that
they can reconfigure their wearable system by simply plug-
ging together the appropriate hardware modules.

Functionally, the services within the framework can be
divided into four areas: modeling the world and things in
it; accessing information; interacting with the user; and ac-
cessing external (non-DWARF) services. The services we
have currently developed in these areas, together with an
example application, are shown in Figure7.

Application
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Glue Logic

TaskFlow Engine
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GUI
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Engine
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Figure 7. Services within the framework

The application is shielded from the low-level services,
such as for user interface or tracking hardware, and ac-
cesses these at a higher level of abstraction using the var-
ious DWARF services. It includes a special service which
provides bootstrapping functionality and “glue logic”. This
provides the other services with models of the world and of
tasks the user wishes to perform.

Connections for communication among the framework
and application services are set up automatically by the mid-
dleware, and many of these bypass the application entirely.
Thus, an optical tracker can provide position data to the
head-mounted display, since it has an ability of type ‘Po-
sitionData’ which matches a need of the display service.



4.2. Components

In this section, we give an overview of the most essen-
tial DWARF services for building AR systems: tracking and
modeling the user’s environment, representing structured
information, access to legacy services, and platform-inde-
pendent representation of multi-modal user interfaces.

4.2.1. Tracking subsystem

The DWARF tracking subsystem consists of software ser-
vices that can be combined dynamically. Its hierarchical
architecture is based on low-level trackers which provide
information of an object’s position and orientation and a
tracking managerwhich combines their output. Trackers
can either use a single hardware device likeGPSor a gyro-
scope, or already be hybrid trackers combining two or more
different kinds of tracker hardware. The tracking devices
provide position data in up to six dimensions, together with
several quality-of-service parameters.

Based on this information, the tracking manager com-
bines and filters the outputs of the trackers and attempts to
improve the results using prediction algorithms. This hi-
erarchy can be extended to more layers; the tracking man-
ager also makes dynamic handover between different track-
ers possible.

TheDWARF tracking architecture has several advantages
compared to a monolithic approach. First, adding a new
tracker service to the framework is very easy. All that the
new service has to do is to register with the service man-
ager. This receives a service description of the tracker that
can be stored in an external database, containing the quality-
of-service parameters as properties. The tracker’s ability to
send out position data then becomes available to the rest of
the system. Another advantage is the ability to dynamically
add or remove tracking devices. With our framework archi-
tecture, the user of an AR system can use various trackers
depending on his current location and seamlessly roam be-
tween them. As a third advantage, the logical separation of
the tracking data’s creation and combination allows devel-
opers to test tracking or prediction algorithms easily.

Currently, we have implemented a service that uses po-
sition data from aGPSdevice and orientation data from an
electronic compass. In addition, a high-precision optical
tracker based on the ARToolKit [10] was developed. The
current implementation of the tracking manager is able to
combine various tracking sources and allows the addition
of various prediction algorithms at compile time.

4.2.2. World model

Tracking data is the dynamic information we need about
the system’s user and his environment. The static informa-

tion about real objects such as rooms and virtual objects
such as superimposed arrows is stored in a small special-
ized database called theworld model.

Every real and every virtual object has an associated po-
sition and orientation, itspose. The world model provides
means to compute the relative pose between any two ob-
jects. This is realized using a hierarchy of objects. All vir-
tual and real objects are stored in a tree-shaped data struc-
ture, such that every object has a parent object associated
with it. The child object’s pose is given relatively to its par-
ent and stored in4 × 4 homogeneous matrices. Thus, all
pose calculations can be done by simple matrix operations.

The world model is designed to deal with many different
types of rapidly changing data. To allow a wide range of
possible applications, it is possible to store arbitrary data—
such asVRML descriptions—in named attributes associated
with each object. To handle dynamically changing content,
after every change, all interested services are notified by
events. The world model subscribes to events indicating
the change of an object’s position or orientation, so that the
pose of each object in the world model is always kept up to
date by tracking data.

To facilitate the modeling of objects, we added the pos-
sibility to parseXML -based textual descriptions. This adds
the ability to dynamically load information about the envi-
ronment, for example, when the user enters a new building.
This is a necessary feature for large-scale AR applications
in intelligent environments.

4.2.3. Taskflow engine

The application domains for many current AR systems in-
clude navigation and maintenance aspects, which can be
represented in theDWARF taskflow engine.

We define ataskflowto be the representation of a se-
quence of actions that have to be executed to complete a
user’s task (Figure8). It may include branches based upon
user input or other external events such as tracking or sensor
information.

The taskflow engine parses ataskflow descriptionand
executes it. A taskflow description language (TDL) based on
XML allows the AR application developer to easily specify
how the framework should react and how the sequence of
activities is influenced by the user’s decisions or events from
other services.

The TDL describes a finite state machines of activities
connected by transitions. An activity’s description contains
a specification of what should happen upon entering it, such
as displaying a supporting document to the user, firing a
transition or sending an event to other framework compo-
nents. It also contains a set of event handlers that define
the reactions of the taskflow engine to user input or external
events.
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Figure 8. A simple taskflow

Additionally, the TDL offers a simple variable mecha-
nism, conditional transitions and a mechanism for the mod-
ularization of taskflows. TheTDL allows the development
process to be divided into independent parts: creating the
supporting documents and creating the taskflow.

First, information that supports the user during his task is
prepared for displaying on the head-mounted display, using
multimedia authoring tools. These documents may contain
simple graphical or textual information but may also include
virtual objects to be superimposed on and registered with
the real world. The second step is to specify the flow of
actions and assign the prepared supporting documents to
the actions in the taskflow. The taskflow’s description may
be created using a text editor or a graphical user interface.
Since theTDL is based onXML , it is possible for a legacy
system to create the description from workflow, product
management or other information.

This separation of content and application logic allows
rapid development of application prototypes. Since a task-
flow description may be loaded dynamically, it is possible
to adapt the the system to new environments or reconfigure
the taskflow at runtime.

4.2.4. Context-aware service access

Besides predefined taskflows, the user of aDWARF system
should be able to spontaneously use external legacy ser-
vices, such as connecting to a printer in an unknown en-
vironment. This is handled by thecontext-aware packetor
CAP service. Here, the user defines a service he would like
to use, such as “print out this document on the way to the
meeting room”, and theCAP service takes care of it.

The major problem for this task is the user’s current prin-
ter configuration. Even technically simple tasks such as
printing can lead to problems in unknown computing en-
vironments, since a lot of contextual information such as
the preferred paper size has to be considered.

The basic idea of theCAP service is to encapsulate such
information in packets that are further processed by soft-
ware devices that route them in a suitable way. For the print-
ing example, all of the user’s configuration data, e.g. paper

size, preferred color model etc., is stored in such as packet.
The CAP service gathers all necessary information for an
optimal fulfillment of the given task of printing from the
other DWARF subsystems and executes the print job. Fur-
ther details on theCAP service can be found in [16].

4.2.5. User interface engine

The services described up to now do not have any means of
direct user interaction. This is provided at a high level of
abstraction by theuser interface engine. The design of this
subsystem had two main requirements: platform indepen-
dence of user interfaces, and multi-modal user interaction.

For wearable systems, the user interface consists of nu-
merous I/O devices such as head-mounted displays, palm-
tops, and speech recognition systems. When the user can
trigger the same action by different modes, i.e. voice or ges-
tures, the user interface can be termedmulti-modal[18].

We usedUIML [4], theUser Interface Markup Language,
as a starting point.UIML can be used to develop generic user
interface descriptions that can be transformed to markup
languages for display in a browser (views) at runtime. With
this approach it is possible to achieve platform indepen-
dence for views.UIML , however, lacks support for multi-
modal user interfaces. Thus, we extendedUIML and devel-
opedCUIML , for CooperativeUIML [21].
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Figure 9. Creation of different multimodal user inter-
faces from a CUIML document

Figure9 provides an overview of how human-computer
interfaces are generated from aCUIML document. A multi-
modal user interface consists of several views. InCUIML

it is possible to define acontroller which keeps track of
the state of the whole human-computer interface and deter-
mines which views have to be changed on user input or ex-
ternal events. For our prototype we reused a version of the
taskflow engine as a controller. To alter the views,manip-
ulators are generated as well. They separate the low-level
access to a view from the specification of what to change on
an event from the controller.



The first prototype of the user interface engine trans-
formed genericCUIML descriptions toHTML and toVRML .
We used a web browser and aVRML plugin to display the
views. TheVRML scene is updated by manipulators when-
ever the user changes her position.

The user interface engine has many advantages: Like
UIML , it allows delegation of development tasks and rapid
prototyping. Additionally, the user interface is highly flexi-
ble—when the user changes an I/O device at runtime, all
that has to be done is to generate an appropiate view.

5. Developing applications with DWARF

As a working proof of our framework concepts and espe-
cially of DWARF’s use for rapid prototyping, we developed
a first prototype system. This is essentially a campus nav-
igation system allowing the wireless use of services such
as printers. A short video clip with a demonstration of our
scenario can be downloaded from theDWARF web page [1].

5.1. A navigation scenario

We chose an AR campus navigation scenario similar to
existing systems [8] but with an additional focus on seam-
less handover between tracking methods and on the use of
location-based services.

Fred is invited to a meeting with some software engineer-
ing students at the TU M̈unchen. He is equipped with a
wearable computer and a head-mounted display. Fred has
a PostScript handout on one of his laptops, and has already
registered the handout to be printed as soon as he reaches
the TUM main building.

Fred leaves the subway station. As he walks past an in-
formation terminal, his wearable system downloads person-
alized navigation instructions to the meeting room.

On Fred’s head-mounted display, a three-dimensional
map of the area enriched with navigation information ap-
pears that guides him to the TUM, where the print job for
his handouts is sent off by wireless LAN.

Inside the building, he is guided by a schematic two-
dimensional map to the hallway outside the meeting room.

Two printers are located there, and a three-dimensional
arrow points to the printer his print job was printed on. He
picks up the handouts and is now ready for the meeting.

5.2. Mapping onto the framework services

The scenario was, of course, chosen so that it could be
implemented using the availableDWARF components. Here,
we show how the demonstration system took advantage of
the high-level and low-level framework services.

Figure 10. Indoor and outdoor navigation

High-level services The user navigates along a path deter-
mined for him by a route-finding service (which was outside
the scope of the system). This path can easily be modeled
using the taskflow engine, since it consists of a fairly linear
sequence of landmarks with a few alternate routes.

The structured map of the TUM campus and the rooms
in it fit well into the world model.

The user interface was specified abstractly with the user
interface engine, which received indoor and outdoor navi-
gation scenes to display when certain landmarks had been
reached in the navigation taskflow.

Finding a nearby printer that matches the user’s prefer-
ences was managed by the context-aware packet service.

Low-level services For indoor and outdoor navigation,
we needed different types of tracking. Outdoors, we used
GPS and an electronic compass. Indoors, we used an op-
tical tracker when accurate three-dimensional registration
was required (i.e. highlighting the printer), and a simulated
ID-tag tracking system identifying doorways when it was
sufficient to know which room the user was in. Note that the
higherDWARF services did not have to worry about which
tracker to use where, as these were dynamically chosen by
the middleware based on their availability.

The low-level user interface services included anHTML

and aVRML display for two- and three-dimensional naviga-
tion, and a speech recognition system for user input.

Downloading navigation instructions from the informa-
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tion terminal and sending the print job used wireless net-
work technologies such as bluetooth and wirelessLAN .

5.3. Modeling the application

Most of the application could be modeled using the high-
level services as described above. Still, some of the appli-
cation’s logic had to be programmed separately.

One key responsibility of the application inDWARF is
bootstrapping. Here, the application had to ensure that the
taskflow, world model and user interface descriptions for
navigation were correctly sent to the high-levelDWARF ser-
vices, when the user confirmed the download via a scene in
the user interface engine.

Once the system was started, the application provided
glue logic. This involved, for example, translating the posi-
tion data from the tracking subsystem into more high-level
events that were significant for the taskflow, such as “enter-
ing room 3175”. To accomplish this, the application used
the representation of the rooms in the world model. Ad-
ditionally, the application had to trigger the sending of the
print job when the user had selected this using the user in-
terface engine.

5.4. Deployment

For our prototype, we used standard PC laptops mounted
on a fixed frame backpack as shown in Figure11. In the
future, we hope to use one of several powerful wearable
hardware platforms that are currently under development.

The first version ofDWARF was developed on a variety
of platforms, including Linux for Intel and for PowerPC,
Windows 2000, and Macintosh. The demonstration sys-
tem was deployed on two laptops running Windows 98 and
Windows NT, connected with standard ethernet cables. Ad-
ditional peripheral devices included a FireWire camera for
optical tracking, aGPSreceiver and a head-mounted display.
All devices are battery-powered, and the time of operation
is more than two hours.

5.5. Results

The results of the demonstration were very encourag-
ing. First of all, the implementation of the scenario took
only three weeks’ time, which is rapid prototyping at its
best. The concept of using loosely coupled services for AR
proved quite workable in practice.

Moreover, the performance of the distributed wearable
system was sufficient for AR, even for the indoor naviga-
tion using optical tracking. The lag in transmitting position
data between tracking and display services, which were on
different computers and communicated using a connection
that had been set up dynamically by the middleware, was
quite tolerable and remained below 10 ms.

6. Conclusion

We believe that the technology to solve individual prob-
lems within augmented reality is becoming mature enough
to consider the more general problem of building whole
classes of AR applications. In our opinion, this can best
be solved by a component-based framework.

6.1. Progress to date

We have designed and implemented the first version of a
flexible framework with modular software services that ad-
dress the key areas of functionality in general AR systems.
Such a component-based framework has advantages for all
the people involved in AR systems: the project manager,
application developer, component developer, and end user.

As a proof of concept, we have built a demonstration
system for an indoor and outdoor navigation scenario. This
proved quite workable, allowing sufficient performance de-
spite the architectural flexibility and rapid application de-
velopment.

6.2. Future work

With the first version ofDWARF, we have a platform for
research and development which is extensible in four direc-
tions: technology for individual components, middleware,
new applications, and new types of services.

First, each framework component is a target for future
research and development—for example, more advanced
tracking methods and better display hardware. New tech-
nologies and algorithms, e.g. for tracking, can easily be
tested in existing systems, since we use standardized inter-
faces and a middleware system to shield the services from
the complexity of distributed programming.

Second, theDWARF middleware can be extended in or-
der to support richer kinds of quality-of-service informa-



tion, additional communication protocols, and better error
handling in the case of network failures.

Third, new AR applications can quickly be prototyped
using available components, taking advantage of high-level
application descriptions such as taskflows, world models
and multimodal user interface specifications.

Fourth, when developing new applications, we will be
able to identify new types of useful services and, using the
middleware, migrate them into the framework. For exam-
ple, we could extend the abstract models of applications in
the taskflow engine and the world model, and develop a
powerful model of the user (or multiple users), including
preferences, history and security information.

We think the time has come for AR frameworks. There-
fore, an important goal of this paper is to encourage discus-
sion in the AR community on how these frameworks should
be designed, what components are needed in general, and
what interfaces are useful in particular. We hope that in the
not-too-far-off future, we will be able to combine new tech-
nology developed by other research teams and by us into
flexible, yet powerful wearable AR systems.
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