
Resource Dependency Manager Pattern

Thomas Reicher, Asa MacWilliams, Bernd Bruegge
{reicher,macwilli,bruegge}@in.tum.de

Institut für Informatik, Technische Universität München
Boltzmannstraße 3, D-85748 Garching bei München, Germany

The Resource Dependency Manager pattern handles the transitive depen-
dency of components in component-based systems by regarding components
as resources and introducing dependency descriptions, which model a re-
sources’ dependencies on other resources. Before a resource is acquired or
released, its dependencies and transitively the dependencies of required re-
sources are evaluated by a resource dependency manager to set up a graph
of transitively dependent resources.

1 Example

Using one resource often means actually using many resources, because the initial re-
source depends on other resources. This dependency often continues transitively (Fig-
ure 1). A resource can be anything that is required for a user service or application, for
example, a runtime software or hardware component, or a shared library.

For example, in a pipes-and-filter architecture for image processing, there is a process-
ing chain with an image source (e.g. a video grabber), possibly filters, and a feature
detector that finds defined optical features in the image. The result is used by a pose
estimator which calculates a position from the feature positions in the image. The use
of the pose estimator resource requires the use of a whole chain of other resources. Tra-
ditionally, it is left to the developers of the individual resources to find and use required
resources, either by binding them directly through libraries or by asking a resource life
cycle manager as described by Kircher and Jain [3].

2 Context

The Resource Dependency Manager can be used for complex systems which consist
of many interdependent components or resources, which should be changeable after
component development time, e.g. installation, initialization, run time or shutdown.

PoseEstimator:
Resource

FeatureDetector:
Resource

User

FeatureDescription:
Resource

VideoGrabber:
Resource

CameraParameters:
Resource

ImageRectifier:
Resource

Fig. 1. A user acquires a resource which transitively uses other resources it depends on.

3 Problem

In order to keep the structure of a complex system changeable after development time,
it must be possible to replace one resource by another. However, a resource may depend
on other resources which have to be replaced transitively.

To solve the problem, the principle of information hiding should be applied: re-
sources should not know about the dependencies of other resources. This shields devel-
opers from the complexity of the entire system, and allows resources to be replaced.

However, hiding the dependencies is at conflict with keeping the system manageable.
If dependencies between resources are hidden, several issues arise. Some are already
covered by the Resource Lifecycle Manager pattern, but some go beyond it:

• Availability—Some resources are shared by several dependent resources. If such
shared resources are created individually by different resources, it is difficult to im-
plement a flexible resource sharing policy.

• Obscurity—Developers of a calling resource must write a reasonable error message
when a resource cannot be acquired. Often, when a necessary resource somewhere
in the dependency chain cannot be found, the application refuses to work without
providing a proper explanation. Indeed, such a message may not be available to the
application, since the error is not propagated back up the dependency chain.

• Manageability—If each collaboration between individual resources is managed by
the resources themselves, there will be heterogeneous solutions preventing a general
management of the resources and their collaborations.

• Dependency cycles—Cycles in a dependency graph, which could possibly lead to
initialization deadlocks or endless loops, are harder to detect and to solve if such
chains are set up without a coordinating instance.

• QoS enforcement—The quality of service that a resource promises might depend on
the quality of service it receives from other resources. Therefore, ensuring QoS along
the chain of interdependent resources may be necessary.

• Implementation exchangeability—Often developers of a resource want to use a re-
source of a particular type, not a particular instance. In mobile systems, the available
instances of a particular resource type can change. Then there must be a managing
instance that replaces unavailable resource instances by new ones.

4 Solution

To make the implicit and hidden dependencies explicit and visible, introduce externally
accessible Dependency Descriptions for each resource. Such a description must at least
store a list of other resources the resource depends on. Introduce a separate Dependency
Repository which stores the Dependency Descriptions.

Additionally, use a Resource Dependency Manager that reads the Dependency Repos-
itory and calculates a dependency graph, with the resources as nodes and the possible
usage relationships as edges. Based on this graph, the Resource Lifecycle Manager es-
tablishes connections between interdependent resources. In addition, it can load and
start the resources on demand.

5 Structure

Figures 2 and 3 show the participants of the Resource Dependency Manager pattern.

Dependency Repository

register(Dependency Description)
getDependencies(Resource)

Dependency Description
DependencyList:Resource[] 0..*

1

Resource User

Resource Lifecycle Manager

requestResource(Resource)

Resource

start ()
stop ()
connectWith(Resource)
disconnectFrom(Resource)

1 1

1
Resource Dependency Manager

getStartOrder(Resource)

1

Fig. 2. Class diagram of the Resource Dependency Manager pattern.

Class
Resource User

Responsibility

• Acquires and uses
resources for the end
user.

Collaborator

• Resource Lifecycle
Manager

Class

Resource

Responsibility

• Represents a reusable
entity.

• Is managed by the
Resource Lifecycle
Manager.

• Registers its
dependencies with
the Dependency
Repository.

Collaborator

• Dependency
Description

• Dependency
Repository

• Resource Lifecycle
Manager

Class

Dependency Description

Responsibility

• Describes the
dependencies of a
resource.

Collaborator

• Resource
• Dependency

Repository

Class

Dependency Repository

Responsibility

• Stores the
Dependency
Descriptions.

Collaborator

• Resource
• Dependency

Description
• Resource

Dependency Manager

Class

Resource Lifecycle Man-
ager

Responsibility

• Calculates a
dependency graph
for a Resource.

• Manages the
Resources.

Collaborator

• Resource
• Resource

Dependency Manager

Class

Resource Dependency
Manager

Responsibility

• Calculates the
transitive
dependencies among
the resources.

Collaborator

• Dependency
Repository

• Resource Lifecycle
Manager

Fig. 3. Classes of the Resource Dependency Manager pattern.

A Resource is an entity providing services to a Resource User or to other Resources.
A Resource User acquires and uses resources as a proxy for the real end user. It is a

special resource that only requires other resources but does not provide any of its own.
A Dependency Description lists the other resources that a resource depends on. In the

simplest case, this is a list of names. A more complex case is described in Section 12.
A Dependency Repository stores the dependency descriptions of resources.
A Resource Lifecycle Manager manages the lifecycle of resources and establishes con-

nections between them. It requests a start order of dependent resources from the De-
pendency Manager for the resource a user needs, initializes and connects them.

A Resource Dependency Manager identifies the dependencies among resources based
on the Dependency Descriptions and calculates a start order among them. The start
order is returned to the Resource Lifecycle Manager.

6 Dynamics

The pattern consists of the following activities (Figure 4):

• Each Resource registers itself with the Dependency Repository by providing a De-
pendency Description. Alternatively, the Dependency Description may be provided
by an installation tool, e.g. when installing a new resource.

• The Dependency Repository stores these dependencies.
• The Resource User needs a Resource and requests it from the Resource Lifecycle

Manager.
• The Resource Lifecycle Manager contacts the Resource Dependency Manager to re-

ceive a start list of all Resources the requested Resource depends on directly or indi-
rectly.

• The Resource Dependency Manager contacts the Dependency Repository to receive
a list with all Resources the requested Resource depends on.

• For all Resources in this list, it transitively requests more Dependency Lists from the
Dependency Repository.

• The Resource Dependency Manager calculates a start order of all required Resources.
• The Resource Lifecycle Manager starts all required Resources in the calculated order,

and connects them.
• The Resource Lifecycle Manager connects the Resource User with the requested Re-

source.

In addition to the allocation of resources and their connection as described here, the
Resource Dependency Manager pattern must address the deallocation of resources that
are no longer needed. This is not described in detail, as it is essentially symmetric.

7 Implementation

Several steps are necessary for the implementation of the Resource Dependency Man-
ager pattern.

• Define a static Dependency Description format, e.g. an XML file, and/or a run-time
interface to create and modify Dependency Descriptions. All managed resources
must be described uniformly in the same format for the Resource Dependency Man-
ager. It must be able to compare them and find matching resources. For example,

:Resource
Lifecycle
Manager

:Dependency
Repository

:Resource
User

a:Resource
b:Resource

register()

register()

connectWith(a)

getDependencies(a)

start()

requestResource("a")

start()

connectWith(b)

getDependencies(b)

return [b]

return []

:Resource
Dependency

Manager

getStartOrder("a")

return [b,a]

Fig. 4. Sequence diagram showing the use of Resource a, which depends on Resource
b. The upper part shows the registration of Resources with the Resource Repository, the
lower part the creation of the graph of dependent Resources (here a very short one with
just Resources a and b).

it must be possible to decide whether a resource provides a service which another
resource requires by using the same name for the service. Simple resources might
provide only one service with a particular standardized name; more complex re-
sources could provide several services.

• Create a Dependency Repository which stores the Dependency Descriptions for all
managed resources. The Dependency Repository reads Dependency Descriptions and
makes them accessible at run time for the Resource Dependency Manager. For simple
cases, there is one Dependency Repository for one Dependency Manager in a system.
In larger systems there might be several Repositories which can be used by several
Resource Dependency Managers in a distributed system.

• Define resource management semantics as described in the Resource Lifecycle Man-
ager pattern.

• Define resource access semantics, based on the interaction of the resources.
• Define resource creation semantics: specify whether a resource can be started several

times, only once (Singleton), whether resources can be managed in a resource pool,
etc. This information is used by the Resource Lifecycle Manager.

• Define graph topology constraints such as the interdiction of cycles.

To use this implementation within an existing system, the following steps are necessary:

• Determine the list of required resources and their dependencies.
• Create a Dependency Description for each resource.
• Modify the initialization code of the resources so that they can be managed by a

Resource Lifecycle Manager.
• Modify the application to acquire resources through the Resource Lifecycle Manager.

8 Consequences

Benefits of the Resource Dependency Manager pattern are:

• Design visibility—This pattern shows which other resources a resource depends on,
not only directly but transitively. This makes deploying systems and diagnosing er-
rors easier.

• Offline precalculation of the dependency graph—The description of resource depen-
dencies of the resource in the repository allows the dependency graph to be precal-
culated and resources to be started more quickly.

• Separation of concerns—The system setup (resource location and connection) is sep-
arated from the steady state of resources using each other. Thus, system setup and
steady state can be optimized separately. For example, setup could be flexible but
slow, whereas communication in the steady state is highly efficient.

• Resource allocation—The knowledge about the dependencies among the resources
allows the implementation of different resource allocation strategies based on an
overview of the resource demands.

Liabilities of this pattern include:

• Compatible resource descriptions—In order to set up a graph of interdependent re-
sources from a pool of resources, the descriptions of them must be compatible, i.e.
different developers of resources must agree on the same names for resources and
attributes. This is particularly difficult for open systems with independent develop-
ers.

• Adequate resource descriptions—The calculation of a dependency graph on the base
of resource descriptions requires a descriptions language that is powerful enough to
describe resources very precisely. The Resource Dependency Manager must be able
to find resources that match exactly.

• Compatible resource implementations—Compatible resource descriptions are the
basis for finding matching resource pairs. However, there is always the gap between
resource description and resource implementation. This is mainly the case in open
systems with independent resource providers.

• Development complexity—There are no development tools that support the devel-
oper of a resource in modelling its Dependency Descriptions. Usually, such a descrip-
tion is not part of the development environment for the resource functionality but
must be done with additional tools (in the simplest case, a text editor).

• System complexity—A Resource Dependency Manager adds complexity to a system.
It is a powerful component that can make the developers’ life easier because he
does not have to consider transitive dependencies. On the other hand, as a central
component it must be implemented very carefully because all resources depend on it.
This pattern is most useful in systems with several nested interdependent resources
such as operating systems, distributed systems or highly dynamic systems. On the
other hand, if badly developed, it can be a single point of failure.

9 Limitations

Several aspects are beyond the scope of this pattern.

• This pattern does not address stateful resources. The dependencies between re-
sources are modeled without regard to resource state. To address problems such
as dynamic failover between components, the modeling of component state would
become necessary. This would require a complex component description language.

• Resource multiplicity and identity are not handled by this pattern. If one resource
depends on several instances of another resource, the dependency descriptions must
be extended by an attribute for the number of required instances.

10 Known Uses

OSGi framework—The OSGi framework [8] is a specification for the delivery of multiple
services over wide-area networks to local networks and devices. Part of the framework
is a Resource Manager which transitively starts all required supporting services for a
requested service. Therefore each OSGi service provides a description of other services
that must be started in advance.

Linux RPM—The Linux RPM [1] file format provides a list of the other packages a
package depends on. The Package Manager reads that list, checks if all required packages
are already installed, and issues an error message if some of them are missing. The
Debian Package Manager can additionally install transitively required software packets
automatically.

DWARF—The middleware for the DWARF augmented reality framework [2] uses
XML-based descriptions of DWARF services to setup a chain of interdependent ser-
vices [4]. Here, the dependency repository and resource lifecycle manager are imple-
mented as one distributed component, the Service Manager.

Windows Service Management—Windows Services must be described in a registry
entry. Among other information, they describe their name, the name of required ser-
vices and name of the executable to start them. When a service should be started, the
Windows Service Management calculates the graph of the required other services that
service depends on. Based on this list, it starts any services that currently are not run-
ning.

Linux kernel modules—Linux maintains a separate modules.dep file that specifies
module dependencies. This list is used to load required kernel modules on demand.

11 Variants

There are three implementation variants of the Resource Dependency Manager pattern.
The first two are invisible to the resource user and the resources themselves, but are
different in the implementation.

Combine Resource Dependency Manager and Resource Lifecycle Manager. The Resource
Dependency Manager and the Resource Lifecycle Manager can be combined into one
component that is responsible for both tasks. There is no difference for the resource
user to the original solution, since the Resource Manager acts as the facade. However,
it is different from the implementor’s point of view. It makes the implementation easier
because there is one fewer component. However, it is also less flexible as it does not
allow to use exchange the Resource Dependency Manager implementations supporting
different management strategies for resolving conflicts or breaking cycles.

Distributed repository and dependency management. The Dependency Repository and the
Resource Dependency Manager can be broken into several federated components in a
distributed system. The distributed approach makes the system more flexible and avoids
a single point of failure. It also allows the integration of service location mechanisms,
integrating newly discovered resources into existing dependency graphs at run time.
This variant is used in DWARF [2]. However, this solution is more complex as it requires
the development of a protocol between the participating manager components.

No Resource Lifecycle Manager. The main use of the pattern is to provide a resource to
some other resource and to check and resolve any internal dependencies beforehand.
The instantiation of these resources can be left to the resource requestor. Then it only
gets a dependency list from the Resource Dependency Manager and is responsible for
acting accordingly. This solution can be used if a common resource management is not
possible or needed, for example if the goal is only to check if a resource can be used
and which resources needed to be installed.

12 Extensions

The Resource Dependency Manager pattern can be extended in several directions, tak-
ing advantage of the existence of explicit Dependency Descriptions.

Abstraction: services and quality of service. In the simplest case, a Dependency Descrip-
tion simply lists the other resources a resource depends on. This means that the depen-
dencies refer to specific software or hardware components. For greater flexibility, it is
possible to specify the abstract service types a resource provides. For example, the De-
pendency Description of an application that displays its on-line documentation in HTML
format could refer to the abstract service type WebBrowser rather than the concrete re-
source Netscape.

In this extension, a Dependency Description becomes more general. It does not
only include a resource’s required services, but also the services it provides to other
resources. In order to distinguish between different implementations of a service, the
resource’s provided services may be described using QoS attributes. In the same fash-
ion, the required resources can be specified more closely using boolean predicates over
these attributes, or numeric expressions for optimization.

This extension is used in DWARF, where components describe what they provide by
Abilities and what they require by Needs. Abilities have attributes which can be matched
by the needs’ boolean expressions. It is also used in RPM, which has requires and provides
fields in package descriptions. Simple attributes and predicates are available in RPM,
e.g. to specify a minimum compiler or API version.

The introduction of service types can be used in open and mobile systems with ser-
vice discovery to adapt the system to changes in the availability of services over time.
But such a solution is more complex and less robust. The overall problems are service
naming and compatibility. First, service user and service provider must agree on the
same name for a particular service. This can be solved by service specifications by orga-
nizations such has the Internet Engineering Task Force (IETF). The second problem is
that once a service provider has been found, it is not clear if it really implements what
it promises.

Support for Design by Contract. In Design by Contract [5], preconditions for the use of
software resources are made explicit, as well as postconditions that hold after use, if
the preconditions have been met. These preconditions and postconditions are specified
explicitly, usually taking advantage of special programming language features. The pre-
conditions and postcondition create a contract between the caller of a method and the
object implementing that method.

A resource’s dependencies on other resources can be modelled as a simple contract.
The method in question is a resource’s start() method. Its precondition is the avail-
ability of other resources, as specified in the Dependency Description. Its postcondition
is the availability of the resource itself.

Thus, a contract exists between the Resource Lifecycle Manager and each resource.
Only if the Resource Lifecycle Manager can provide all required resources with the
required quality, then a resource can start and provide its own services. Beyond that, the
Resource Lifecycle Manager sets up a graph of simple contracts between the resources
themselves when it initializes and connects them. These contracts are based on the same
simple preconditions, the availability of a resource and its services.

Using attributes and predicates to model quality of service as described above, the
preconditions and postconditions can become more complex. Thus, an extended version
of the Resource Dependency Manager pattern can benefit from a design by contract
approach, where the preconditions and postconditions are made explicit in the form

of Dependency Descriptions. A general solution to negotiating collaborations between
distributed designed-by-contracts software components is an area for future research.

Support of component-specific communication methods. Traditional middleware tech-
nologies such as CORBA [7] or COM+ [6] do not support heterogenous means of
communication, e.g. video streams and method calls. To adapt the system’s transport
facilities to the requirements of the resources, the Dependency Descriptions can include
the supported communication mechanisms. The Resource Lifecycle Manager can then
establish appropriate communication channels. This approach is used in DWARF.

13 See Also

Design by contract was first introduced by Bertrand Meyer [5]. He uses it to specify
assertions on objects in Eiffel.

Resource Lifecycle Manager describes a pattern that decouples the management of
the lifecycle of resource from their use [3]. The Resource Dependency Manager pattern
extends this pattern by targeting transitively dependent resources.

14 Acknowledgments

The authors would like to thank Arno Haase for his constructive comments and his
patience in shepherding this paper, and the participants of the EuroPLoP 2004 writers’
workshop “E” for their supportive feedback.

References

[1] E. BAILEY, Maximum RPM, Sams, 2003.
[2] M. BAUER, B. BRUEGGE, G. KLINKER, A. MACWILLIAMS, T. REICHER, S. RISS,

C. SANDOR, and M. WAGNER, Design of a ComponentBased Augmented Reality
Framework, in Proceedings of ISAR 2001, 2001.

[3] M. KIRCHER and P. JAIN, Resource Lifecycle Manager, in European Pattern
Language of Programs conference, Kloster Irsee, Germany, 2003.

[4] A. MACWILLIAMS, T. REICHER, and B. BRÜGGE, Decentralized Coordination of
Distributed Interdependent Services, in IEEE Distributed Systems Online –
Middleware Work in Progress Papers, Rio de Janeiro, Brazil, June 2003.

[5] B. MEYER, Applying Design by Contract, IEEE Computer, 25 (1992), pp. 40–51.
[6] MICROSOFT CORPORATION, COM+ Component Model.

http://www.microsoft.com/com, 2003.
[7] OBJECT MANAGEMENT GROUP, CORBA 2.4.2 Specification. formal/01-02-33, 2001.
[8] OSGI ALLIANCE, OSGi Service Platform, Release 3, Mar. 2003.

